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I. INTRODUCTION

Estimates of the mortality behavior of a property are useful for
calculating depreciation and making management decisions relating to
property.

Mortality characteristics usually have been ascertained through the
use of one of three approaches: the actuarial methods, the semi-actuarial
methods, and the forecast method. The actuarial methods are distinguished
from the other two groups in that they require a knowledge.of the proper-
ties age. at retirement. Analysis by the actuarial methods yield a life
dispersion pattern and, accordingly, an estimate of average service life.

The actuarial procedures can be applied only to plant accounts that
have complete age identification. This limitation ehcouraged the develop-
ment of the simulated-plant-record or SPR methods which are semi-actuarial
methods.

The semi-actuarial methods only require a knowledge of annual retire-
ments, annual baiances, and annual additions. The SPR methods are simply
trial and error procedures in which an attempt is made to simulate some
portion of a plant accountiﬂg record that may or may not permit age iden-
tification of plant retirements.

The forecast method differs from the other two in qhat it does not
require numerical data prior to estimating a life dispersion patfern and
an average service life. This procedure eliminates formal calculation,
and the estimates are made_solely by judgment.

The common methods of computing depreciation require an estimate of

service life, and some methods may require an estimate of life expectancy.



Estimates of service life and life expectancy can be computed from a

smoothed and extended life table of original life tables developed

through life analysis techniques.

Several actuarial techniques are available to construct a life table

for depreciation applications, i.e., the individual unit method, original

group method, the composite original group, the wultiple-original group

method, and the annual or retirement rate method.

The construction of a life table usually involves two steps:

1.

2.

applying any of the above methods to the survival data

graduating the observed life table and fitting the
smoothed series to a family of survival functions

Several methods have emerged for the graduation of an observed series.

Miller (1946) classified these methods as follows:

1.

The graphic method. In this method, the observed values
are suitably plotted on graph paper and among them a
smooth, continuous curve is drawn as the basis of the
graduated series.

The interpolation method. In this method, the data are
combined into age groups and the graduated series is ob-
tained by interpolation between points determined as repre-
sentative of the group.

The adjusted-average method., In this method, each term
of the graduated series is a weighted average of a fixed
number of terms of the observed series to which it is
central,

The difference-equation method. 1Imn this method, the
graduated series is determined by a difference equation
derived from an analytic measure of the relative emphasis
to be placed upon fit and smoothness.

Graduation by mathematical formula. In this method, the
graduated series is represented by a mathematical curve
fitted to the data.



0f these methods, the graphic approach and graduation b§ mathematical
formula are the most widely used in the field of depreéiation. A com-
monly used technique of smoothing and of extending the life table is

to fit a general linear model, usually a polynomial, to the observed
retirement ratios by the least square method, To fit general linear
models to retirement ratios, a number of assumptions must be made. One
of the objectives of this study is to reexamine the validity of the as-

sumption of independence of retirement ratios.



II. RELATED CONCEPTS

The majority of research that has been associated with actuarial

methods can be classified as follows:
1. The investigators find mortality characteristics that
' better describe the retirement patterns of a property.

A mortality law may be expressed as a probability den-
sity function f(x) where f(x) is the percentage of units
or dollars put in service that are retired during the
age of interval x. This is well illustrated by the works
of Winfrey and Kurtz (1931), Winfrey (1967), Couch (1957),
Kimball (1947), Cowles (1957) and Henderson (1965).

2. The investigators find and/or apply better techniques in
which mortality laws of industrial properties are used.
The research works of Winfrey (1967), Nichols (1961),
Lamp (1968) and White (1968) fall into this classifica-
tion.

Chiang (1960a) showed the approximate unbiasedness of, and zero correla-
tion between, retirement ratios. The approximate zero covariance proper-
ty has been used by several researchers (Krane, 1963; Henderson, 1968;
Lamp, 1968; and White, 1977) to investigate various methods of fitting
that reflect serial independence of disturbance terms.’

Due to their importance to the central topic of this study, parts of
the works of Chiang (1960a) and White (1977) are briefly presented.

Let n, be the total number of units placed in service as a group or

1

vintage at age zero, and n, be the number of units entering the age in-
terval k. In life studies of physical property, it is assumed that all
losses or withdrawals are actual retirements from service. Therefore,
the right-censored observations are not considered. Hence, n, is the

number of units exposed to the risk of failure or retirement at the be-



ginning age interval k.

%
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G
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indicates the number of units retired during the kth‘age
interval; dk =mo-n . e

denotes the estimated probability of retirement during the
kth age interval, conditioned upon exposure to the forces
of retirement at the beginning of the kth age interval.

By definition

e _
g =~ ==, k=1,2, ..., N
e k

In depreciation applications, ak is commonly termed a re-
tirement ratio.

represents conditional proportion surviving. Tgﬁs is the
estimated probability of surviving during the k™ age in-
terval, conditioned upon exposure to the retirement at the
beginning of the age interval k. By definition,

A

A _ P4l
P

q = o ,kaZ,””N

In depreciation applications, ﬁk is called a survival ratio.

=1 -

indicates the unknown true probability of unit retired in
the age interval k.

= (1 - q,) denotes the unknown true probability of a unit
will survive during the age interval k.

denotes cumulative proportion surviving. This is an esti-
mate of the probability of surviving to the beginning age
interval k. It is given by

%,

S = Pp1 Spe1 T a, 2, 3, ..., N =-1.

L1}

: = 1.0 ’ k=1



The number of units entering the first age-interval (i.e., nl) can
be viewed as ny independent trials of a random experiment where each
trial can have one of several outcomes. The outcome of a particular
unit (trial) may be retirement during the first age-interval, the second
age-interval, ..., or the Nth age interval. The sum of the number of
units retired in all ages is equal to the size of the original Qintage

put in service. Symbolically,

dl + d2 + ... F dN = nl.

Let ek denote the probability that a unit is retired during the kth age

interval (k =1, 2, ..., N) and ek = E[ak §k].

Since a unit is to be retired once and'only once somewhere in the
life span, then the sum of the probabilities retired in all ages is unity
or 91_ + 92 + ...+ GN = 1. Thus, we have the well-known lemma 1. The
number of units retired, dl’ cery dN in a life tabie have a multinomial

distribution with the joint probability distribution

n 8 8

= 8 .. =& - 1 1 N .
Prldy = Py e =yt E T T e s (2D
1 k
Expectation, variance, and covariance are given, respectively by

E(dk[nl) =06, fork=1,2, ..., N,

var(dk) = nlek(l - ek), for k=1, 2, ..., N, (2.2)

and
cov(dk, dz) = —nlekeg, for k42, %k, 1=1, 2, ... N



It follows from (2.2) that expectation, variance and covariance of

the unconditional observed proportion of units retired in each age inter-

d, d
val, —;L,-ié, ceey fﬁi, are given, respectively, by
n.’n n
1 1 1
dk '
E(n—llnl) =8, fork=1,2, ..., N,
d 6, (1 -28,)
k k k
var(;—) ==, for k=1, 2, ..., N, (2.3)
1 1
d d ~0,8
covqa—-,;&) = : % , fork#2=1,2, ..., N. (2.4)
1 71 1
Lemma 2, The survivors nl, n2, e nN in the life table form a random

vector with components having the binomial distribution, and their joint

probability function is given by

= 0 —— = n° =
Pr (n1 0%, my = 0%, «ee, B =D Nlnl)
o -] o
i R’ R S S
k=1 n°k!(n°k_1 - n°k)! k-1 k-1
for n°k =0, 1, «.., n°krl, with n°0 = n,. (2.5)

Mys the number of units surviving to the beginning of thé kth age inter-
val, is a binomial random variable such that
N
Eln ] =n, 26, N/(1- ¢,
i=k
k-1

) N
var(n,) =n. (X 8)(Z 8.) (2.6)
k LA



where
k-1
b = iil O -
Consider the random variable &k.= dk/nk’ which is the proportion
of those units surviving to the beginning of age interval k that are re-

tired during the kth age interval. It can be shown that an approximate

value of the variance of ﬁk is

q, (1L -gq,)
var(ﬁk) = k k-lk . (2.7)
n,(1- I 86,)"
1 i=1 i

For details of this derivation, see White (1977).

Lemma 3. The conditional observed proportion of units retired, ﬁk,
(or surviving, ﬁk) in an age interval is an unbiased estimator with
variance as given by (2.7); the covariance between two proportions ﬁi and

Qj (or between ﬁi and ﬁj) is zero for i # j; for i, j=1, 2, ... N.



III. STATEMENT OF OBJECTIVES
Consider the general linear model of retirement ratios,

y = XB+¢

-~

where y is an N X 1 vector of observed retirement ratios, X is a2 known
(N x p) nonstochastic design matrix of ages, § is a p-dimensional fixed
vector of unknown parameter, and €is a (N x 1) vector of unobservable
random error with mean vector E(E) = 0 and finite covariance matrix,
cov(E).

The structure of c;v(g) dictates the method of fitting a linear
model to the retirement ratios. For many data generating processes,
it is assumed that elements of random error € are identically and in-
dependently distribuﬁed. fherefore, the covariance matrix is E(E §l> =
02'IN, where the scalar 02 is unknown and IN is a Nth order identity
matrix. Under a more genmeral formulation, the covariance matrix is
represented by ozw = ¢ where ¥ is a known positive definite matrix.

This enables the development of a number of estimators for @ that

depend upon { and are good in some sense such as "best linear unbiased.”

The generalized least square (GLS) estimator is given by

—l - -
R N S

"~

T >

which depends on y and is best linear unbiased.
In practice, the covariance matrix ¥ is not given, and is unknowmn

and unobservable, and some restrictive, and hopefully realistic, assump-
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tions azre made about its structure. The most common, and the most re-

strictive, is ¥ = I. In this case, B reduces to the least square (1S)

estimator,

-1 .1

b (X1 ) "Xy

which depends only on the sample observatioms.
If the diagonal elements of & are not all identical and ¢ is free
from autocorrelation, then ® can be written as a diagonal matrix with

the ith diagonal element given by oiz.

GLS under the general assumption that
s 2 2 2
$ = dlag(ol seeeOy s eee Oy )

is often referred to as "weighted least square" (WLS).

The covariance structure of ¢ = WOZ or ¢ = diag(o 2,.L- . UNZ) has
two important implications for estimation. The first is that least-
squares estimators, while still linear and unbiased (in the case of fi-
nite but differing variances), are no longer efficient, no longer provid-
ing minimum-variance ("best') estimators among the class of linear un-
biased estimators. The second implication is that the estimated vari-
ances of the least-square estimators are biased, so the usual tests of
statistical significance, such as the students t and F tests, are no
longef valid. y

As mentioned earlier, vector 2 is unobservable. Therefore, its

covariance structure must be inferred by an indirect method. One method

is to use residuals, e. By finding the relationship between e and ¢,
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the appropriateness of the assumption concerning the covariance of € can
be determined. This will not be discussed in this study.

Another way is to examine directly the covariance structure of re-
tirement ratios. This has been adopted for this work.

The specific objectives of this study are as follows:

1. to model the joint continuous and discrete distributions
of value or vintage group and life

2. to derive the structures of variance and covariance of
retirement ®atios of industrial mortality data under what-
ever mortality law is assumed

3. to reexamine the asymptotic independence among retire-
ment ratios

4, to derive the structures of variances and covariances.of
retirement ratios when mortality law is assumed to follow
geometric distributions

The third objective is very important in conjunction with methods of
fitting linear model to retirement ratios and the cost of computer time.
The ordinary least square is attributable to its low computational costs,
and its support by a broad and sophisticated body of statistical infer-
ence,

This study undertook such an investigation which, hopefully, will
lead to a better understanding of the correct covariance structure and,

hence, to ways of selecting the right method of fitting to the retire-

- ment ratios of industrial property.
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IV. A MODEL FOR THE JOINT CONTINUOUS

DISTRIBUTION OF VALUE AND LIFE

In the field of engineering valuation, most property is measured
by dollars rather than physical units. The age at retirement of a physi-
cal unit may be independent of the age at retirement of any other physi-
cal unit. On the other hand, the physical units comprising a vintage
group are often heterogeneous because of their different physical char-
acteristics.

Dollars are homogeneous, and provide a common scale for measuring
amounts of property. However, the number of dollars invested in items
of a property group generally is not the same as the number of dollars
invested in other items of the property group. The age at retirement
of one dollar.is rarely independent of the age at retirement of some
other values. Hence, dollarslare not independent random variables. The
fact that the ages of retirement of one dollar and some other dollars
are not independent leads to the development of bivariate distribution
of dollar (value) and age (life).

If there does exist a bivariate distribution of value and life then
the relationship between them could be measured by a correlation coef-
ficient.

The coefficient correlation lies between +1 and -1. A correlation
+1l or -1 implies that both variables, values and life, are perfectly
linearly related. The joint distribution of value and life is then con-

centrated along the straight line representing that linear relationship.

-



13

The joint distribution is bivariate only in the singular sense, and one
variable is unessential.

When the coefficient correlation is zero, it follows that both vari-
ables are uncorrelated. It is important to note that uncorrelated does
not imply independence.

So indeed the bivariate model is a more general one than the model
commonly used in previous research. However, the data that support this
model may not be available because practical accounting rarely considers
the bivariate model. Despite the lack of data that could be used to
justify this model, it is theoregically worth%hile to derive the ﬁodel
that may be useful for in future development.

Most previous research has dealt with the univariate distributions
such as Iowa Curve, Weibull, Gompertz-Makeham, etc., todescribe dollars
surviving at any given age. 1In the univariate case, the surviving dol-
lars (values) or number of units are functions of ages (life), where
the ages are fixed random variables.

In the bivariate model, two random variables, i.e., value and life
are considered simultaneously. This chapter presents bivariate log-
normal and bivariate gamma to describe the proportion of dollars surviv-

ing up to a given age.

A. Bivariate Distributions

L
let Fl(x) and Fz(y), fl(x) and fz(y) be the cumulative probability

and density functions of continuous random variables x and y. Then, a
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bivariate probability function F(x, y) wifh these marginal distributions
is monotonically increasing from zero to unity and it is subject to the
following conditions:
1. F(~, y) = F(x, =°) =03
F(z, ®) = F (x); F(®, y) = F,(y); F(», ) = 1.
2. The probability content of every rectangle is nonnegative,
that is, for every X < %55 ¥q < Yos

Pr(x; <x<x),y, <y <y

= F(xz, yz) - F(xz, yl) - F(xl, yz) + F(xl, yl) 2 0.
(4.1)

2
If the second cross partial derivative é%%% exists everywhere, the bi-

variate distribution has a density f(x, y) equal to its derivative and

the condition (4.1) is then equivalent to

2
oF _
-ax—a§—f(x, y)_>_0.

The variables are independent if and only if
F(x, y) = F,(x) F,(y) .

More generally, the marginal density functions fl(x) and fz(y) are re-

lated to the bivariate density function f(x, y) by

f:: f(x, y) dy = fl(x); Ij: f(x, y) dx = fz(y). (4.2)
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The study of the conditional densities

o ix, y) = ix, ¥

leads to the conditional expectations E(XIY) and E(ylx) and to the ex-

pectation of the cross product °

EGy) = [y Exly) £,(9) day,

and to the classical coefficient correlation

- E(xy) - E(x) E(y) (4.4)
Oxcy'

p

B. éeneral Form of F(t)

Consider a bivariate distribution of value and life. Let variable
V represent value and variable .T deno;e life (age). Let F(t) be the
proportion of total dollars surviving up to age t which is equal to the
ratio of dollars surviving at least to the age of t to total dollars
initially put in service. In the discrete case, notationally, f(t) can

be written as
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i
i 3T >t
F(t) = N
z Vi
i=1
b V./N°N /N
i T st it Tt
N N
T V./N
i=1 .

[}

E(VIT > t) F(t)
E(V) : (4.5)

For the continuous case, F(t) is represented as

[, BV[S) £.(s) ds F(t)

j,oo
t fT(s) ds
E(V)

F(t)

L7 EW]S) £,(s) ds F(t)

F(t)
E(V)

F(t)

_ ft E(V]S) fT(S) ds ‘ (4.6)
E(V)

where N denotes number of counts of dollars supposedly taking on
discrete values.

Nt indicates number of counts of dollars surviving at age t.

E(VIT > t) represents the conditional expectation of value
given for all ages beyond t.
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C. Bivariate Lognormal: The

Expression for F(t)

Let the two-dimensional random variable (x, y) have the joint prob-

ability density function

1
£, (%, y)=£(x, y) = = %
X,y 2m 0, 0, V1 - 0°
x-4.\2 (x-1) (y-u,)  yy-u 2
><exp[— 1 ( l\ - 2p 1 2 +( 2)
2(1-pH |\ %1/ %1%, %

(4.7)
for =» < x < ®, - < y < =, yhere 01, 02, pl, Uy and p are constant
such that -1 < p< 1, 0< qs 0 < Ops =@ < U, <, and -» < My <
Then, the random variable (x, y) is defined to have a bivariate normal

distribution.

Bivariate lognormal distribution can be obtained from the bivariate

normal distribution by using the following transformations

(4.8)

where V and S denote random variables corresponding to value (dollar)

and life (age), respectively.

The lognormal distribution of V and S are obtained by the following

- formula:

£(v, 8) = £, (lnv, Ins) 7], (4.9)
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where [J| is the determinant of the Jacobian of the transformations,

dx 3
dv 0s
[3] = . (4.10)
¥ ¥
av 9s

The derivatives of (4.8) with respect to v and s are

b . %
2 /v ds 0

_§X= '-azz
5s = 05 35 = Us -

Thus, the determinant of the Jacobian of the transformation,

1/v ©

3] = = 1/vs.

0 1/s

It follows from formula (4.9) -that the bivariate lognormal of value and

life can be expressed as

f(v, s) = L
21 0,0, Vs Yl - p?
lnv- 2 Inv-u_)(Ins-y,) [lns- 2
Y el 1 e \ Y S A laler A i
*p ) o . 0,0, o
2(1-p) 1 1°2 2

(4.11)
The marginal and conditional densities fl(v), fz(s ) and £(v]s),

f(slv) have the form of univariate lognormal.
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It can be shown that fl(v) is univariate lognormal, i.e.,

2
1 (ln VvV - 1-'1)
f.(v) = ——— exp{ -——5—1}
1 vo, V77 l 20,

From equation (4.2), the marginal density of V,

£,0v) = [ £(v, s) ds.

lns-u2

The substitution of w = ————— into (4.11) and upon the completion of

9

the square on w, the marginal density of V can be written as

-]

fl(v) = / 1 X
27 le Y1 ~ p?

- 0

2 2
1 1nv-u1 1 nv-py
X exp _E o - 7 w-p-—c—-— dw .
. 1 2(1 - 09 L

Then, the substitutions

W - p(lnv-ul)/ol

- and dw = ........g_‘..“__..
u Y1 - o2 /1 - p?
show at once that
2
1 Y oCRY
£ il il S N
v Ul 21 1
1 1 2
X [ o= exp (-5 u) du-
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Note that
2
P |
f°° L =
T® AT
Hence, .
(In v - 111)2
fl(v) = 1 exp - 2
v o, /21 20
1 1
for 0<In v < =
Similarly, fl(s) can be shown to be
. (ins -1,
f2(S) =TT exp - T
s 0, /2n 20

2 2
for 0<1ns<°°;0<u2<°°;

< .
0 02

(4.12)

(4.13)

The conditional density of value given age can be derived as follows.

Formula (4.3) gives
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f(VIS) - M

£(s)
2 2
1 . -1 " In V=i, 2% (1n v-ul) (In s-uz) . In s=l,
) - P 5\ G, O o
M010,VS 1-p 2(1-p7) 1 172 2
1 exp -; In s—']JZ 2
s0,/Z7 2\ %
- 1 v-u\ , (ln v-w) (In s-u)
- 1 exp { -1 1\ _2p 1 2_ .
vols/'ivr(l-pz) ' 2(1-p2) 9 9 )
2
2. [ s—H
+ (1~ (1-p7)) 5 _ . (4.14)
2
Equation (4.14) may be written as
2
4 In v-yu, -po,/o,(ln s -u,)
f(vls) = —2——exp|-3 L 12 2 (4.15)
v01¢21r2 1-p2) ol,/l -p2

Clearly, f(vls) has the form of lognormal with.parameters

By +p01/02(1n s - uz) R

2 2
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E(VIS) can be deduced by the following relationship.. If X is distrib-

uted as lognormal,

Inx - y.\2

1 1

f(x,u,0) = exp |- ‘—0'—2
x0 V21

then, the rth moment of X,

1 r202
M (x) = exp(ur + > ). (4.16)
For r = 1, (4.16) gives
u+02/2 .

It follows from equatiom (4.17) that

o, 2. 2
E(V[s) = exp(ul+oa—1 (Ins- ) + 09—'2—0—)-)
2
o 0,/0 ' 2 2
<s L2 exp‘ Wy = 0 01/02 Hy + % £!;3r£121- (4.18)

Equation (4.6) gives

@ E(V|s) f.(s) ds

F(t) = ‘¢t ECV) (4.19)

V is distributed as lognormal (4.12). Formula (4.17) gives

2
E(V) = M1101/2 (4.20)
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The numerator of (4.19) is evaluated as follows.

E(V|S) £.(s) ds =

2 po, o 2
_ 01 03 (1_02) s 172 1 In s uz
= "P(“l'p_uz 2 e"P"E o ds .
) ts 02/21r 2
(4.21)
Upon the transformation of ln.s=  in the integral of (4.21) yields
00;/0, In s, 2
®g 1 2\ |
[P — ew |- 3= -
S 02 /27.’ 2
po,/o,C 2
o e 1 2 1 (5° Ho
=] P12 \Tg a
Int o, 2 2
2 : 2
- [ expl - ; dz . - (4.22)
O’2 v’E 20’2

Upon the completion of the square of the power of e in the above inte-

grand, the right hand side of (4.22) may be written as

2
exp 3 exp 2 dc
u 20 o,V2T 20 ’
2 2 2
Int

111t--p2 pooz))

= exp(uz o 01/02 + ;:>2 012/2) (1 - ¢(

-
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Therefore, J’:E(,V|S) fp(s) ds = -

(ln t - Uz—p 010'2>) (4.23)

e (i +o’/D (1-0 :
2

The substitution of (4.20) and (4.23) into (4.19) yields the proportion

of dollars surviving up to age t,

: Int -y, -po.o
F(t)=1-<1>( 2 12). -
%

From the definition of coefficient correlation,

cov(x, v) U12

p= = ’

var(x) - var(y) 919

gives
P 010, = 091 °
Hence,
Int -y, -0
P(e) = 1 - of 2 12),
2
where
t 1 - 2/2
¢ (t) = [ —e% /%4, (4.24)

/_

The sample estimate of F(t) can be obtained simply by replacing the un-

known quantities with the sample quantities,
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(4.25)

R Int -y, -0
Be) =1 - of 213,
%
where ﬁz, 812 and 82 are obtained by the maximum likelihood derived from

the bivariate normal:

R i ti R §(vi - ul)(ti - UZ) .
P2 " 7n 3 %12 7 n ’
2 A2
v, (v, = H,) Z(t, - u,)
Ao i i a2 i i 1 . 62 = 41t . 2
1573 9 < n
D. Bivariate Gamma: The
Expression for F(t)
Consider random variables
X=U0U+V
and ' (4.26)
Y=U+W

where U, V and W are independent gamma distributed variables with param-

eters a, b, and ¢, respectively, i.e.,

£(u) = rég) ua—l -u ,
f(v) = T?%— vb‘.l eV ’
Fw) = == wS eV, (4.27)
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Then, the joint distribution of X and Y,

- x.y

e
f(xs Y) = I"(a) I!(b) I'(C) (}""u) e

min(x,y) a-1 . b-1 c-1l u
fO u (x-u) du

(4.28)

is called bivariate gamma.

The probability distributions of x and y can be shown, respective-

ly, to be
xa-l'b-l o X
A e S)
and (4.29)
atc-1 ~y
£(y) =L_I"(a+c) e’ -
Bivariate gamma distribution of (4.28) can be derived as follows.
Let
u=7C
then
(4.30)
v=x-1
w=y-10C.

The determinant of the Jacobian of transformation of (4.30),

= -1 1 0| =1.

3] = o(u, v, w)
| o(Z, %, y)

The joint distribution of u, v, and w can be written as the product

of their distributions since they are independent;
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f(u) £(v) £(w)

f(u, v, W)

_ 1 a-l -u b-1 -v c-1 -w
= T(a) T(b) T(o) u e v e w e ., (4.31)

The substitution of equation (4.30) into (4.31) yields:

52 % ) = Ty Ty & e o (x-0P e Y«

x (7~ O

orx

£(z, x, y) = £ ?;a-l (x-E)b-l (y-2)

c-1 ¢
T(a) T(b) I'(c) & .

The joint distribution of x and y is then obtained by integrating out

the above equation with respect to Z; that is

-(x+ty)  min(x,y)
£(x, y) = =
) T(a) T(b) I'(c) 0

22 (x-pP Tt (-t b ar .

(4.32)

The best property of bivariate gamma distribution is the linearity

of its regression line, i.e.,

y. . (4.33)

E(XIY)=b+a+c

The conditional expectation of X given Y, E(XIY), can be computed as

follows.

E(X|Y) = E((U + W |1)

E(UlY) + E(V]Y) . (4.34)
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To find E(UIY) it is necessary to know the joint distribution of Y and
U, and, hence, the conditional distribution of U given Y.

Equation (4.26) gives

Y=U+W.
Let U=n then
(4.35)
w=y-T.

The determinant of the Jacobian of transformation of (4.35),

lJl:,M: 10:1
oM, y) -1 1 )

U and W are independent random variables, therefore, their joint distrib-

ution can be expressed as the product of their distributions:

f(u, w) f(u) £(w)

_ 1 a-1 -u _c-1 -w
* Ta) (o) u e w e . (6.36)

The joint distribution of Y and U can be obtained by substituting equa-

tion (4.35) into equation (4.36).

f(n9 y) = fu v M, y) iJl
1 a1l -n -1 ~(y-n)
= T(a) 700 n e (y-m e

= r<a)lkaT ot (y - me e, (4.37)
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The substitution of n = u into equation (4.37), will gi\;e

N =yt G- w0 e (4.38)
The conditional distribution of U given Y,
1 _ ac-1 Y
) Ronchiil Ak
- 1 atc-1l =~y
I'la+c) y e
_Ta+e) ¥ lg-wst |
£uly) = 7 Tto) jevel - (439
ECUY) = [u £(uly) du
_ I'(a + ¢) ua-l (y - u) c-1
=fu T(a) I'(c) ya+c—1 du .
I'(a + ¢) u, a u, c~1
T TG | G @=-p7 au (4. 40)

The substitution of ¢ = u/y; du = y dZ, into equation (4.40) results

in

E(UlY) = flgg—f%(% fra-otya

’ I'IES -It(g hra-ota. (4.41)

This integral is known as the beta function. Hence,
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_y _I'(a + ¢)

. E(UIY) = W B(a+ 1, ¢)

=y _T@+c) T'(a+1) T(c)
I'(@) T(e) T(2a+ c+ 1)

__(a)T(a+¢) T(a) T(c)
(a +c) T(a) T'(c) T(a+c) T

thus,

E(U|Y) S : =y - - (4.42)

To evaluate E(V[Y), recall tgat V and Y are independent. .Thus,
E(V]Y) = E(V).
The distribution of V is a gamma with parameter b, hence,
E(V) = b . | (4.43)

The substitution of equations (4.42) and (4.43) into (4.34) results in

E(xly) =b + T o y .

If x and y denote value and life respectively, then formula (4.6) be-

comes
L
[, EGxly) £.(0) dy

ey . . (4.64)

F(t) =

The numerator of (4.44) can be evaluated as follows.
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E(x|Y) £(y) dy =

atc~-1 -y
© a y e
ft(b+a+cy) l"(a+c)':ly

=p (” szc—l e” a a fcnzf+c d d
-7t I'(a + ¢) YT a ¥ et T(a+e) y

atc-1 -~y atc -y
=] e ooy e
b fer g ¥telteren @

b(1l - I;+c (£)) + a(1 -T v)) . (4.45)

atctl
‘The denumerator of (4.44) is evaluated next. It follows from (4.29)
that variable x is distributed as a gamma distribution with parameter

a + b. The standard result gives

E(x) =a+b. (4.46)

The proportion of dollars surviving up to age t is then obtained by sub-

stituting equations (4.45) and (4.46) into (4.44); that is,

a(l1-T (1) +b(1-T (t))
F(,t) - atctl — ate ,

(4.47)

where
atc-1 -y
-fty e’
I‘a+c (t) = 0 T'(a+rc) dy .

This is known as the cumulative gamma distribution.
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V. A MODEL FOR THE JOINT DISCRETE DISTRIBUTION

OF VALUE GROUP AND LIFE

Consider a large number, n, of units that are classified into M
property groups,.with unit values, respectively s 3gy eee Ay The
practical import of the assumption that n is large is the fact that
independence can not be expected to hold in the case of property group
consisting of a few units. Furthermore, assume value groups ap 2y
ooy By have different life distributions.

What follows below are the derivations of rétirement ratios for
the above kind of mortality data, and of the corresponding estimates
of the variances and covariances. Under the ‘different mortality char-
acteristics, asymptotic covariances of retirement ratios are generally
not zero. When the value-categories do have the same life distribu-
tion, it can be shown that asymptotic covariances of retirement ratios
are zero.

The models based on these data merely represent mathematical con-
ceptualizations. However, with some modifications these models can be
applied to industrial ﬁortality data that are available from the rou-
tine accounts of the firm.

The notational and functional relationships introduéed here will

be used to derive estimates of retirement ratios, and estimates of their

variance~-covariance structure.
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indicates the cost (price) per unit

denotes the number of units of value a_ in the property
groups under consideration

represents the number of different value-categories, and
hence, the number of distinct life distributions

M

z n, denotes the total number of units in the property
s=1 s .
group under consideration

n
8s is the proportion of units of value a in the property

n
group under consideration

indicates the number of units of value a retired during
the age of interval j

Dg

°J is the observed'broportion of units of value a_ re-

a
S

tired during the age of interval j

n

denotes the true probability that a unit of value ag re-
tired during the Jth age interval under whatever llfe—
distribution is assumed

Mo

z

. as 1Ta pa
s=1 s s

denotcs the number of retirement age intervals
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N N M
A = X A,= L I a m p

j=1 3 k=1 e=1 s s,
M N

= X (Z p lYa m
s=1 j=1 ) s as
M

= I ag T,
s=1 ‘s

A. The Case of Two-value Category

Derivation of observed retirement ratios

To gain a better understanding and increase the ease of computa-

tion for the time being, assume that a property group is classified in-

to two distinct values, say a and b.

The retirement ratios are determined as the quotient of the number

of units (or dollars) retired during the age interval divided by the

number of umits (or dollars) surviving at the beginning of that age

interval.

. . t
observed retirement ratio for the k B

age interval

2]
It

dollars retired during the kth age interval
dollars surviving at the beginning of the kth

a nak +b nbk

amn, +b nb - ?(a na. +b nb.)
i i i

(5.1)
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Note here that the subscript 's' is dropped out to facilitate writing

the term. Later on this subscript will be needed in considering for |

the case of the property group having been classified into multivalues.
Both numerator and denumerator of (5.1) can be divided by n =

n, + n, to give:

n ° )
a..;al‘..pb._n_b _k

. a0 m
k n n l n na 1) nb )
ao—a+bo_b_2(‘a‘.._a.o—_j_'+b¢_bc_i)
n n n n n n
i a b

With the definitions of T's and p's as given above, r, can be expressed

as

a b

r, = k . (5.2)
avra+b1rb-2-3(a7rapa +b1rbpb)

i i i

am™ p +bTm P
2 b

In terms of A, Ak and € (5.2) can be written as

>\k+ek
A=-L A, -1 €,
il i'l

T

Mot g

A - A°k - A k

A 1+¢/
= k_ . k' . (5.3)

A-a,  T-e - Ay
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Using the Taylor expansion,

1 k
o - AO =1+ - )\° +( )
T- e (k- 1) h-ry T

(5.4)

With the substitution of equation (5.4) into (5.3), r, may be approxi-

mated by the linear expression:

cpk e?k
T %t ek“)I'Hpk. G
where
k-1 k-1
e, = I A3 €°% = I €, 3 and ¢, = A /(A -
L A P k- Tk

Yk

2. Derivation of large-sample covariance of T and T,

) .

The covariance of rl and r3

and k = 3, (5.5) gives
r, = d)l + elll
and

€q (.el + sz)

= A
r3 ¢3 -+ O Al + "3

The covariance becomes:

can be derived as follows.

= ) PNV

(5.5)

For k=1
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COV(El, 53)' ]y (var(El) + cov(El, €,))
cov(r, 1) =y iyt 3 5
’ 17 (=2 = Ay

AQ - A = A2)2 [\ = A = A) cov(e,, €) +
+ 13(var(€1) + cov(El, 62))] . (5.6)

According to the lemma 1 (Chiang, 1960a), the number of units re-
tired, in each age interval, from each value category, ag have multi-

nomial distributions with parameters na., P, ...,.pa . Under
s sl sN

the multinomial distributions covariance and variance of Ej can be

evaluated as follows.

a

cov(ei, €£.) = cov(l a m (ﬁa - P, ), Z a_m, (ﬁa -P, ))
J i s °si si j s %sj  %sj

? cov(as Wa (pa TP, .), ag "é (Pa TP, .)) +
i s 'si si s “sj sj

+2IZ cov(aS LA (Pa TP, ')’ a. (pa . " Pa .))
s#r s “si si r rj ]

2 A N
X(a_ T ) cov(Pp, , P, ) +0.
§'7s a ag;’ ag

Note that covariance of p's that come from different value groups are

2ero.
'

It follows from (2.4) that

CCV(pa ERN .) =
si sj a
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Hence,.
(a_m_ )?
' . 5 a_
cov(si, Ej)--Z—'—n——Pa P, e
s a si Tsj

With the definition of Ei’

var(ei) = var(Z a m (pa -, -))
s s “si si

2 A
= Z(as T, ) var(pa ) +
s s s;

+IZ (ar L )(as T ) COV(ﬁa K ﬁa .)
s#r r s si ri

. 2 R
= L(as L ) var(pa _)
s s si

But
pasi i si
var(pa _) = o R
si a
[
Thus,
(a_ ™ )2
s ag
var(e;) = L —/——7p, 4, -
a si “si

For M= 2, it follows from (5.7) and (5.8), respectively, that

2 2
(a Wa) pai qa. (b ﬁB) Pbi qb.
cov(e,, €,) = = 1 - — 1
1 J

"a M

(5.7)

(5.8)
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and

2 2
(a na) pa. qa ( nf) pbj qbi

n nb

The substitution of A, Ai's, and variance-covariance of €'s into (5.6)

yields

cov(ri, r3) = (a L b ﬂb)'l X

-2
X - - - - . X
(a ﬂa +b ﬂb a “a pal b ﬂb pbl a ﬂa pa2 b Tb pbz)

X [(a L +b mo-am p, - b TP, —&T P, - b T Py ) X

1 1 2 2
P p P P
X (=-(aT )2 —fl——fé - (b ﬂb)z bl b3)+(a T p. +b nb pb ) X
a na nb a 33 3
2 2 (am )2 P. P
(a ) (b m) a a, Fa
x (—m2—p q +—L 5 ¢ - 1 2 _
B, a8 g m, Thy by B,
2
(b m) Po, Py, ‘
- =)]. : . (5.9)

nb.

After the terms in the numerator of (5.9) are multiplied out, covari- -

ance of r, and r3 becomes:
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cov(r,, r.) =(am +b1r)-1X'
1’ 73 a b" -

-2
-bﬂbpbl a'rrapa —bnbpb) X

X(aTra+b1r—a'1rapa ) )

b 1

><[nnl((aﬂ)sp 2.p +(a1r)2(b7r)p p. p, +
a a al a3 a b al a3 bl

3 2
+(a7m)"p, p. . p. +Cuw) (bmWm)p. P p -
a al a3 a2 a b al a3 b2

3 2
-(aw) p,. p. ~(a7w) " (dW)p P, +
a al a3 a b al a3

2
+(am) (bm)p, 4 Py

3
+(am) p q
a "3 3y 3 1 4 °3

1 a

3 2
-(am) p. p, P, ~CaTm) " (bM)p, p_ p )+
a al a2 a3 a b a1 a, b3

-1 2 3 2
to “((aT)(b m) Py Py, p, +({®bm) Py, o, +

1

2
+ (a 'fra)(b Trb) P, P, P,

+ (b 'n'b)3
1 3 2 :

Py, Py, P
blb?’b2

2 3
-@m)®er) p p -(M™) p p F
a b" Fby by b* by by

2 3
*(am)®dm) p g p. +(BmT) p q P~
a b by by “ag b’ Fby “by by

2 3
~(am)(®m™)"p p p. ~-O®®) p p. P )] . (510
a b by by “ay b Fby “b, “by
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The substitution of q. =1~-p andq =1-1p into (5.10), along
a; a;. bl bl
with the further simplification the cov(rl, r3) may be expressed as

- -1
cov(rl, r3) = (a T + b ﬂb) X

2 2 s
-awm Lp =b m z Py v) Tox

Xx(am +bdm o
a i=1 34 i=1 i

b

x fn, (1) ) 7, (B, -2, )+

2
+ (a ﬂa) () "B) Pal(pa3

2
+@m) " (bwmw)p (p. P, -P. P ))+
a 4 b al a3 bl al b3

-1, 2 )
+ 0, ((a ﬂa)(b Wb) pbl(pa3 pb3) +

2
+(am)®1)" p (p, P. -P. P )+
a b b1 b3 a, b2 a3

2
+ (a Wa)(b vb) Py (pa P, ~ P,

128 NI. (5.11)
1 % 73 3 °1

If the life distributions of the value groups a and b are identical,

P, = pb = P fori=1, 2, 3, ..., N, then it can be easily observed
i i

that

cov(rl, r3) = 0.
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3. Derivation of large-sample covariance of r, and I,

Recall that.the assumption that the property group is categorized
into two value groups, say a and b, has been made. It follows from

(5.5) for k= 2 and k = 3 that

A A £
rz:(A-IA)”'(x-zx)”z—_l 2
1 1 =2
and
r. = A3 + 83' + X3 (€1'*€2) .
30 =2 =) A=Ay -2y (A-Al-;\z)z

With the use of the definition of covariance, covariance of T, and r3

can be written as

_ _ -2 _ _ -2
cov(rz,r3)— (A Al) (A Al XZ) x

X [(AB(A - Al) + A2A3) cov(el, €2) +

+ (A - ll)(l = A = X)) cov(e,, g4) +

1
+ AZ(A - Al - Az) cov (el, €3) +
+ A3(A - Al) var(ez) + AZAB var (El)] . (5.12)

Covariances and variances of €'s in (5.12) can be evaluated by (5.7)

and (5.8), respectively.
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The substitution of A, Aj's, variances and covariances of €'s intp

(5.12) , permits the writing of the covariance of I, and r, as

-2
- - - X
cov(rz, r3) (a L +b mo-am pal b T pbl)
2 -2
X(aTra+bTrb—‘_Z(aﬂapa.+b'rrbpb)) x
i=1 i i
P, P P, P
. a n_ b n, a‘a

x (a Tra-l-b ‘ITb—a 1Ta pal-b ‘n’b pbl) +

+(aﬂapa +bﬂb Py )(awapa +bﬂbpb )) +
2 . 2 3 3
P. P P %
2 "8, "3 2 by by

+ (~(a 'ﬂ’a) n—a—(b ﬂb) ) x

- - X
x (a u +b M, oTaTm P, b T pbl)

1

x(a'n'a+b1rb-::1'zrapa -bnbpb-awapa
1 1 2
P P P P
b b
2 3 2 2 °1 °3
+ (-(a 1ra) = - (b Tl'b) o ) x
a

x(awm p. +bm p.) X
a“a, bb2

><(a'"a-i-b‘"bma'"apal-b‘"bpblma‘napaz

-b

TP

b Pb

) X
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P. q P, 4

2 % 4 2 by by

ran)? 22 wry? 22«
a oy

x (a ™ pa3 +b T Py )(a T +b T, - am pa -b ™. Py ) +

3 1 1
P, 4 P, 9
' a n b n,. :
a b
X (a m paz+b ™ pbz) (a 1ra pa3 + b 'ﬂ'b pb3)] . ' (5.13)

The multiplication of the terms in the numerator of (5.13) yields

_ =2
cov(rz, r3)—(a 1ra+b To-am pal b'rrb pbl) X
2 2 -
X(awm.+bm -aw. g p -bmm I p ) X
2 b di=1 ¥ D=1 P

X

-1 4 3
[n “(~(am) p_ P P, -Cam) " (bm)p_  pP_ p_ +
a . a al a2 a3 a b a:L a2 a

4 2 3
+@m) p_ "p_ p,  +(am) " (bW)p_ P
a a; a, a3 a b a;

3 2 2
(am) " ®m)p, p, P ~(am)” (bm) p, P, P, +

1 %2 P3 1 %2
3 2 - 2 2
+ (aw) " (bm)p, “p. p, +(amw) (bWM) p_ P, P P -
a b al a, b3 a b al a, blb3
4 2 3 2
-(@am) " p p "p, ~(@am)" (TP, P P -
a al a2 a3 E.l b ay 2, b3
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- (a "a)3 (b mdp, P =(a Tra)2 ( Trb)2 P,

P_. P P, -
1 3 a, ‘b, b

1 "2 "2 73

PP
az b,

4 3 2 2
- (a Tra) pa2 pa3 - 2(a Tra) (b "b) pa2 pa3 + (a Tra) (b Trb) paz

3
+(@m) p p p +(am)  (bm)p p p +
a a, a3 al a b a2 a3 ’bl

3
+(@m) p "p +(@am) (dW)p p p +
a ay “ag a b a, ag b2

3 2 2
+t@un)  (dbm)p, p_p. +(am)° b)) p p p +
a b al a2 a3 a b a, a3 bl

3 : 2 2
+(@7m)” (bm) p P, +@T) " (bT) p p
a b a, a3 a b a, ag “b,

3
p_ p_ p +(am)  (bT)P P Pp -
a, a3 a.1 a b a2

+ (a T

3
-(avra) P P, P -(aTra) (bvb)pap P, Py

3
-(am) ' p p, p, ~(@m) " (bm)p p p p, +
a a2 a3 a1 a b a2 a3 b

+ (a wra)3 (b Trb) PP
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3
-(am) " (bm)p p Pp_ P/
a b a2 a3 al bl 2 a3 1

3 2 2
m@m))T M), e, B, - (@M G T e, p, B, P

3
~(am) ' p_p_ P, =(aTm) (bT)P P P +
a al 33 a, a b a; a3 a,

3
+(am) p "p. p. +(aTW) (bT) p P
a a1 a2 a3 a b al a3 2 1

3
+(am) p p P+ (a 'rra) (b.ﬂb) pal pa3 paz pbz -

3 2 2
-(am) " (m)p. p.p -(am)°(MBT)p p p, +
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2 2
Py Fl@m)” bm) p, b, P Py F

+(aﬂa)3(b m) P, P
2 1 %3 "1 P2

3 2 2
t@m) " (dm)p_ p, p. P, +(@T) (BT p p
a b al a3 .'=12 b2 a b al 3 °

3
* (a TTa) Pa2 qaz pa3 * (a Wa) (b Nb) Pa.2 qa2 1:'as *

3 2 2
+@m) " (bm)p, q p, +(@T) BT)p q p, -
a b a2 a2 b3 a b a, ay b3
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4 3
-(am) p. q p. P -f(am)"(bm)p q
a’ Ta, ay "a; "ag a b7 Tay; "ay "ag "by

2 2
(a wa) (b "B) P, 9, Py Py +

3
-(aw)"(®m)p. 9 P_ P
a’ Y b’ *a a,. b 9 23 by by

2 3 8 73

3
qat 1."a pa +(a ﬂa) (® Wb) 1:'a 4 Pa pb +

+(am )4p
a '8 3 3 34 1 21 %2 P3

3 2 2
+ (a ﬂa) (b wb) P, 4, P, P, + (a "a) (b ﬂﬁ) P, 9, Pp Py ) +

1 %1 %3 %2 1 % "2 73

-1 2 2 \ 3
+ l11: (-(a TTa) (® Trb) pbl sz pa3 (a We./ (o Trb> pb:L pb2 Pa3 +

3
P, P, P, ¥ (a ﬂa)(b "B) ‘P, Py P, Py T

+ (a na)z (b “5)2 P,
1 Py 3 33 | 1 Py 33 by

3 4
- (a na)(b “b) P, Py Py T (b wb) P, Py Py +

1 °2 °3 1 %2 °3
s@myom) e p b p +OT)p fp By -
a 1 P2 21 P3 1 P2 °3
-(aTm )2 (b “5)2 P, P P, P, " (a T )(b Tr'b)3 P, Py P, Py ~
, 2 1 P2 8 3 a 1 %2 % °3

4
P - (v ﬂb) P, Py Py P -

3
-~ (am)M® W) P P, P
a’’" b by by "ag "by 1 Py by b3
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2 2 3 4
-Gr) 1) p p, ~2(am)bW) p p ~-(bm)p p +
a b b2 b3 a b b2 b3 b b2b3

2 2
+(am)" (b be) P, Py P,

3
+(am)bm™) p, P, P +
o b3 a; a b b2 b3b

1

2 2 3 2
+(am) @) p. p, P, +(am)bd ) p p, +
a b b2 b3 a2 a b b2 b3

3 4 -
+Cam)®m) p, p_p +(m) p p P+
a b’ b, by 3y b b, "bs by

3 4 2
+(am) ) p p, P +(bWM) p pp, *t
a b h2 b3 a, b b2 b3

2 2 3
+(am) @) p, p, P +(@am)®bm) p P P -
a b b2 b3 a; a b b2 b3 al

2 2 2 3
~-(am) M T™) p, P, P -(aw)(bm™) p P P, P =
a b b2 b3 ay a b b2 b3 a; bl

2 2 3 2
-(am)*“ ®7m) p. p. P. P =(aTm)T) P p, p. +
a b b2 b3 al 32 a b b2 b3 al

3 4
+am)®bm) p p p +(T) p PP
a b" “b, by by b by “by “by |

3 4 2
-(am)®m) p p. p, P ~(m) p P P
a b b2 b3 a1 bl b b2 b3 bl



49

3 4 2
~Gm)®m) p p b, P --(TI.p TP Py "
a b b, by 2, by b’ " Fb, by by

2 2 3
-(am) " (®m) p. P P -(am)®T) p_ P P+
a b bl b3 a2 a b bl b3 3,

2 2 3
+(am)  (dT) p P P, P +(am)bmT™) p B, P_ P
a b bl b3 ay a2 a b bl b3 a, bl

2 2

2 3
+ (a Tra) (b ﬂb) pbl 1>b3 paz + (a Tra)(b '"b) P, Py P, Py

1 73 "2 2

4
p, = (0TI By Py By +

3
~(aT)bT) p P
a b" by "hy by 1 P3 Py

3 4 2 -
+(am)(bm™) p P P, P +(bT) p pp Pt
a o’ Pby Tby T3y b, b by b, by

4 2
+ (b ) Ph. Pp By ¥

3
+(a ."a)(b TTb) Py Pb Pa Pb s D3

1 3 2 "2

2 2 3
+(am)" (™) p q P +G@®)DbT) p, g P, *F
a b _b2 b2 a3 a b b2 b2 aq

a

3 4
+@T)BT) p, q P F(bT) Py G Py T
a b’ Pb, b, "By b’ Pb, b, "b,

2 2 3
- (a Tra) (® Trb) sz qb Pa P - (a 'n'a)(b Wb) Pb2 qb

P P -
2 31 23 ag b

2 1
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3 4
-(am)bm)p ¢ p p--(bmT) p q p P +
a b” Pb, b, “a; by " Pb, b, "b; b,

2 2 3
+(am)" (b m) Py, %, Pa, Pa + (am)(b m) P, qbl P,

2 73

3 4
+(am)bm™) p q p_ p +®dT) p q p P )]
a b b1 b1 a3 b2 b bl bl b2 b3

After extensive simplification, (5.14) may be presented by

= -2
cov(rz, r3) = (a L +b mo-am P, b T Py ) T x

1 1

2 2 -
X(am +bmwm -am™ L p =-bm I p )" X
a b a1 3y b 1=1 bi

-1 2 2
Xh “((am)  (bm) p (p, P, ~P, P )+
a a b a2 a3 b1 a1 b3

2 2
+(am) " ®™) p_p.(p, P, -P, P )+
a b a2 b1 al b3 a3 bl

2 2
+(@m) (m™) p_ p (P, P, ~P_ P )+
a ' b a1 b2 33 b2 a2 b3

2 2
+(am)" " (bm) p (p, =-p_ )+
a b a, b3 ag

2 2
, +@T)) " (bbT) p (P, P -pP, P )+
a b a2 ag b2 a, b3

Py

+
3

(5.14)
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+ (a
+ (a
+ (a
+ (a
+ (a
+ (a
+ (a

+ (a

2 2
)" (b m)” p,

mgz (b

Tra)2 (b

T a)

wa)

ﬂa)

2

3

3

(b

(b

(b

3
ﬁa) (b

n'a)

xra)

2

P, (P
b1 a
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3

3

- Py ) +

2
©) p. p, (P, P, -P, P )+
b 32 b1 az b3 a, ' b

3 "2

2
) p. p. (P, -p )+
b 2y b2 b3 a3

vb)z Pa pbz(pa3 Pp, " P pb3) +
ﬂb) pa1 paz(pb3 - paB) +
Trb) Pa1 Paz(pa3 - pb3) t+
™) Pa paz(pal Py, " Pa, pbl) +
™) paz(pb3 - pa3) +
Wb) pa2 pa3<pb2 - paz) +
v ), Xp, -p )%
b ag ag b3
) paz(pa3 pbl - pal Pbs) +
) pal paz(pa3 pbl - pal Pb3)) +
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-1 2 2 )
+n (aT) (bm) p P, P, -P, P, )+
b a b b2 a; b3 bl a3

2 2
+ (a T’a) (b Trb) Py sz(Pa3 Pb1 -P, P, ) +

1 3 71

2 2
+ @r)Gr) p, p. ( P, =P P )+
a b bl ay b3 a2 b2 a3

2 2
+(am)” (b m) sz(pa - pbs) +

3

2 2
+(am) b)) p ( P, -p P )+
a b b2 b3 a, b2 as

2 2
+G@m) br) p. p. (. -p_)+-
a b b2 al b3 a3

2 2
+@T)  b®) p. P (P, P, =-p. P )+
a b a; b2 b2 a3 b3 a,

2 2
+(am)  bw) p_.p. (., -p. )+
a b bl a, 33 b3

) 3
+ (am) (bm,) Py paz(pb3 P, " P, Py ) +

1 1 3 71

3
+(am)bm) p p (P -p ) *
a b bl b2 aq b3
+@mybm) e b (=P, )+
1 "2 73 3

+ (a wa)(b Trb)3 Py

p, (p. P, -p DP_)+
by az by Thy T3

1
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3
+(@an)dbmn) p (p -p. )+
a b b2 a3 b3

3
+(am)(bm) p p (. -p )+
. a b b2 b3 a, b2

3 2
+(am)® ) p. (p. -p. )+
a b b2 b3 a3

3
+am)bmn) p (@ p. ~-p. p )+
a b b2 b3 a1 a3 b1

3
+(@mn)b ) p p (p, P, -p p )] (5.15)
a b b1 b2 b3 a; ag b1
When the property of values a and b are respectively subjected to
the same mortality law, i.e., P, =P, = P, for all i, then all the

i i
terms in the square bracket of (5.15) cancel out; therefore, cov(rl,r3)=0-

4. Derivation of large-sample covariance of T and T,

The covariance of LN and rﬂ where k < % can be derived as follows.

For k = k and k = £, (5.5) gives

€ Ze))
i
r, = ¢ + + Ak
ko Tkt (-2 -z’
1 i i
and
(€ €.)
€ J
2 i
r, = ¢ + +A .
2= % (A-?Aj) zu_“j)z
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From the definition of covariance it follows that
A ' .
cov(ek, 82) L cov(ﬁk’ § EJ)

cov(r,, rz) "A-3% Ai)(A STyt
1 j 3

2
G = D30 - 24

cov(i ei"? ej)
* 2 ! 7"
A-za) G-12D° G- 22
3 R 3

Ak cov(ez, i si) Ak Ag

+
-z 11)2
i

The covariance of T and ry may be written as

_ -2 -2
cov(rk, rl) = (A - i li) (A - ? Aj) x

X [(A -2 Xi)(l -2 Aj) ‘cov(i-:k, EJ?,) +K2 (A-2 Xi) X
1 i i

X (var(g)) + jik cov(€, , Ej)) +A (-2 Xj) f COV(él, )+

+ Ak Al(i var(€,) + Z cov(Ei, Sj))] (5.16)

gL

fOI i = 1, 2, ese gy k-‘l; j = 1, 2, ve ey ‘Q'-l.

Under the assumption that the groups of property of values a and b
are respectivély subject to the multimonial distri@utions, covariances
and variances of €'s in (5.16)'can be computed by (5.7) and (5.8), re-
spectively.

The substitution of A, Ki's and variances and covariances of €'s
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into (5.16), permits the covariance of r, and r to be written as

k ')
- _ _ -2
cov(rk, rz) (a'tra+b'nb a'naZpa bnbgpb) X
i i i i
x(am +bm -awm Ip -bwmIp )-2x
a b a,. a, b . "b.
J J J J
Xx{(am_ +bm -aw Zp =-bm Ip )X
a b ay a; bi bi
><(a'"a"-b-"b_a."agpa.-b‘"bgpb.)x
J J J J
2 2
(a m) (b ™)
X(~———p_ P, ~——p_ p J)+(amp +Dbmp )+
. na a, 2y nb bk b,?, a az. b bl

=bm Zpy )X
1 1

(a 1) b )2
X(———p, ¢ +—p, q -
na a‘k a'k na bk bk

2
- P I p. =(w)"p L p )+
s gk 5 2 Pegdk
b

+(am p +bm p )X
a a, bbk

X

(a7 +bm
a

-a T - %
p "8 tp, ~bm 2 pbj)

i 3 J
2 2
('a TT:—.a) paz (b Trb) sz
Ip, -————1Ip )+
i i

n . a, n
a i "i b

X(_
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+ (a T pak +b Ly pbk)(a ™ pa2 + b b sz' X

(am)? ® )2
X iRy 4 Py 4 -
i b i "1 71

(a m)? & m)° . (
- —— I p p =-———— I P, P . 5.17)
a i# % 0% " 4§ Pi P

fori=1, 2, veey k=13 3 =1, 2, sauy 2-1; k< Q.

After the terms in the numerator of (5.17) are multiplied out,

(5.17) can be written as

cov(rk,r£)=(a1ra+b1rb'-a1ra'£p -b'lTbpr) X

><(aﬂa-'r'bWb-aﬂaz}'pa.“b'"bgpb.) X
J 1] J ]

x [(na-l(-(a wa)4 p - 2(a na)3 (b m)p -

2 P
%% % 3

- (a wa)z (b ﬂb)z P, P+

& 2

4 3
+(a1ra) P. P Zpa_+(a7ra) (bTrb)p .§ij+

P
akaf,j ] akaﬂ,:]

2 2
P, z p, + (a wa) (b “B) pak P, z Py +

. 3 ‘
+(am)” (bm)p
S TS I vy s

4 3
+(am) p, p, Lp, *(am)” (bm)p, p, I pbi +

&% % i 3 k % i
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+(an) " (bm)p P Zp +(a1r) (b'n')p Zp -
2 DT Ty Tag 4 T3y 2 Pay 5 b
4
-(am) p. P ZZp -(avr)(bW)p P, LZp, Py -
a’ Ty tag a, ? 3 bl e ey 5 8 by
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~(aT) " (M®mMm)p. p. ZIZp p, -
a b aka2,13 jbi

2 2 '
—(aTra) (bvrb) pakp ZZpb pb -

%013
- (a ﬂa)4p p, L p, -(a ﬂa)B (b m) p Py, Z p, -
I T % itk %4
- (a wa)3 bm)p, P, I p, ~(a ﬂa)z(bwb)zp p, 2 p,* |
% ik % Y b ime 3
+ (aw)ap P p, P, +

+ (a ﬂa)

+@m)>®m)p, p I I op b, +
- Lig#k 33

2 2
+(am)y " ®bmn) p_p & I p_ p *+
a b bo i g#k Pi 3

+@mn)*p a p, *@m)d®mIp, q p ¥

T % % p

+ (a wa)3 (b m) pak qak Paz + (a Tra)2 (b Trb)2 Pa qak pbz -
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4 .3
-(am) p, 9 P Tp =-(am) (b m)p, qa, P, Lp -
a’ T oy T3y Y a b’ Fay ey 3y O3

Zpa-

3
-anm) (m)p, 9, P
a b Ta 3 bgy 34

2 2

-(am) (W) p, 4, P Lp, -~
a b akakbzibi

.-(a'n')ap P 2P -(éﬂ53(bﬂb)pbp Ip. -
a’ Ty 2y a k 201 %

3 2
—(am)” ®m) e, Py P, ~(am) (T )e, B, IP +

G i i L %k i M
+ (a wa)"p p, LLlp p, *(a Tra)B(bTrb)p p, Z2Zp, P °
e 213 %40 G 313 i3

3
+ (aT) (bm)p,_ P tZp p, *
a’, b” “ag bkij aiaj

2 2 '
4+
+ (aT)” () Pa, % ZIp, P

kii 24 3
+ (a TTa)4 P P, E Pa, qai+(a Tra)3 (b ™) P2 Po, i Pa; Ya, *
+ (a 'rr;)z (b ) pbk pbz ? pai qai -
- (a ﬂa)a pak paz f_g Pai paj -(a “3)3 (bm,) 'pakpbﬂ,i#g Paipaj -
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: 3
-(a?ra) (b'rrb)pb P, Z p, P -

k 2 id %40 Y

I p_ p )+

i#j a a

. 2 2
(a Wa> (b Wb) Py .
i 7]

P
Kk °g

-1, 2 2"
amr)® k) e B -

1.
b K

3 : 4
2(am)(bm) p p -(am) p p +
a b bk b.Q, a bk b,Q,

3.
pbg Lp, +(@m)bm) p

2 2
+ (a 1Ta) (b Trb) Py '
i 73 k

P, Zp *
k EER

3 4
tam)bm) e py Zp, +OT) p Py Lopy *
k L3 7] k 23 7]

2 2 . 3
+G@m)* ®wn) ' p. p. LZp +(am)dbm)p p. Ip +
a b bk bliai a b bkbf,ibi

3 , 4
+am)dbm) p. p Zp + (W) p_p Lp -
a b bk bﬁ?,i a; b bk b,?,i bi

2 2
~-(am) " (") p p ZIp p -
a b bk b,Q,ij ai a.j
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-(am)bm) p. p, ZZp_ p, -
BT by by g5 33 By
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Ip
2 5% O3

pZZ

4
- (b wb) 128 +

L p
X b

P
by ¥k 03

p, P, *+

3 1 3k e

I Z p

k221 jfk

3
m) (b ) Po, Py

4
T Py

k i 3#

2 2
Tra) (b Wb) Pbk.

3
O M) Ry G

2 2
'rra) (b Trb) pbk

3
)b 1) p. 4
a b’ Po, by
1r)2(b1r)2 P. 2P —(a'IT)(b’ﬂ')sp p. LD
a b Pak by 5 b a N P

3
) (b Wb) Pak pbﬂ,

2 2
'rra) (b T\'b), P

I Z p
2 i3k

k i

b, Pb

+
i3

P +
ai bj

3
q P + (am)( M) p. Py 9 +
b, T3y a b’ Pby “bL by

q P, &
by “ap 4

z
i

i

Py Ezpb P,

21

P LP
b!l.ia

4
p +(®™) p, q P, =
ag b bk bk b}?,

3
p. ~(am)(b M) p, 9 P
ag a b bkbka

4
-(bm) p. q P LP
i b’ by By Pp g O

i

4
p, =(bm™) p_ B Zp *
b b’ Pb, by bs

4

J

Zpb
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3
+Gn)bm) p. p, ZZp P +
a b’ akblijb b.

Z’Zpb +

3 4
+(am)®dm) p p. ZZp p +(bmw) p P
a b° b b b, ‘a b bkb“_J

2ij "1 %

2 2
+(am) (b)) p P, p. q +(a7T)(be)p p,. Zp, q *
a b 2 ,Q,ib bi a.kb2 b bi

3

+(anm)dm) p, P. Zp. q 4 . _

a’ " bT by Tag g by b+ (b M) py By Ipy g
k "24i i i

2 .
-(@am)” (bm)op ZLp, P

P
3y, i#3

3
(a Tra) (b Trb) pak pbz ;Z pb pb

3
s m)O M) ey, p, DIpy P, ”

k 2 i#j i
4 .
- o)ty By i#z P, P, )] (5.18)

for i ~ 1, 2, ..., k-1;
i=1, 2, ..., 2~1;

k <R.

After extensive simplification, (5.18) may be expressed as

B =2
COV(rk’ r;Q,) = (a Tra +bm -a 'ﬂ'a z Pa - b‘n’bg pb.) x

b i i
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-2
X(a'na+b'n-a1TaZpa -b'rrbpr) bS

b i3 i%

-1 2 2
* [, "Wam)” (b ™) pak(paz § ij - pbz ? paj) +

3
+(aw) " (bm)p (p_. Zp, -p 2p)+
a b” Tag ey 4 by by 3y

2 2
+(am)”" (bnl) p (p. Zp, -p Zp )+
a bT Tagta 4 by Thy g gy

+(am)” (bm)op, (Xp dpy, e, -p, Ip )+
8 ki % i P4

+ (a ) (bTr) P, (Zp ) (p Zp -p. Zp )+
a 85 Py b g o3 Tag g by

bm)p (ZTp )(p Zp =-p Zp ) +
a b" Tag s Tag  Ya by By ey

2
+(@m) (m) p Cp ), Zp -p Ip )+
bT Thety Ty T

+(am)  (bm)p (p Zp -p Zp, )+
a b g bkl a % i by

2 2
(b 7)) pak(pbl - pal) + (a7 )" (b “b) pak(Pbg - pag))+

+

-1 2 2
o (@n)” (bm)p (o Ip, -p, ZPb ) +
k 23 %5 %3

3
+(aTT)(b‘ﬂ')p(p Zp -p Zp)+
a b™ Thphy g T3 T3y by
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.‘ 2 2 .
+(am) b)) p_ (, Ep -p ZIp )+
a b* by by 8y e g by

+(a1r)(b1r) pr'CZpb)(paki -pb'kip ) +
by 4

2 2
+(arn )" ) p (Tp_Mp_ Zp, =-p ZP)+
a BT byt Ayt e g by B 4 T3y

3
+(am)(bm) p (Tp ), Z0p )+
a’tn b Thy e b by § Tay aki by

+ (am (bTr) Py (Zp J(p P, - P zp)-!-
35 Py akibi b 5 ey

—pb ZP)*'

3
+(arnt)bm) p_(p, Ip
a’’ bt by ttay 4 by By 4 vay

3 2 2
+@mn)bm) p (p, -p )+ (aT)" (™) p (p, -p NI.
a b bk ag bSI, a b bk a, bg’
(5.19)
It is important to note here that cov(rk, rz) for k<4, and k, 2=1,

2, ..., N, is a symmetric function for values a and b. It means that

cov(rk, rl) can be written as
cov(arz)—f(nsﬂap’nb: b’pb)—
£(ng, Ty P> B T D).
When the value groups of a and b have the same life distribution, i.e.,

P, =Py = P; for all i.
1 1
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then, it is easily observed that qov(rk, rz) = 0,

5. Derivation of large-sample variance of L

The variance of the retirement ratio for each age interval can be

computed by the following formula. For k = £, (5.16) gives
var(r,) = (A - £ A)"* 1A - £ A2 var(e,) +
“k . N i g 1 k
+ ZAk(A - i Ai) i cov(ek, Ei) +

2
4 (Z var(e,) + Z Z cov(e., €.))] (5.20)
Ak i i 1#5 i’ 73 ,

fori, j=1, 2, ..., k=1.

Covariance and variance of £€'s in the square bracket of (5.20) can be
computed by formulas (5.7) and (5.8), respectively.

The substitution of A, Ai's, variances and covariance of €'s in-

to (5.20) yields

-4
var(r,) = (a7 _+bm -aw Zp -bm Zp ) X
k a b a; a; b i bi
X [(am_ +b T, -al Ip. -b T z Py )2 X
a a1 3 i °i
2 2
(a va) (b nb)

X (—2—p q +——0p gq )+
P T b By
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- - T X
+ 2(a ﬂa pak +5b wb pbk)(a m +b mo-a na i pai b m i pbi)

: (a wa)z : (b ﬂb)z
X («——2—p Ip =-—=2—p Ip )+
R T be i by
, (am)? i ® 7))
+(aﬂp+b1rp)( p, 9 +——1LIp_ q, -
2T b by n, g % &8 oMy ybyh
2
(am)" 55 (b"b) 3z

— ;4 P, P, - Py P )l (5.21)
n i#j “a 2 n i#j b, b

a i
fori, =1, 2, ..., k-1.
The multiplication of the terms iﬁ the numerator of (5.21) gives
var(ry) = (am +bm -am Zp -bm I pb.))-4
i "1 i 71

X [na-l((a ﬂa)4 pa’k qak + 2(a Wa)3 (b ﬂb) pak qa£+

+

2 2
(am)” o), q, -

%

4 3
2(am) p, q Zp. - 2a m)T ® ™) pak q i Py -

8 i ¥

+

K) 2
2(a Wa) (b ﬂb) pak qak.i pai - 2(a Wa) (b Wb) p kqak z pb

A
+(am) p.q ZZp_ p +(a1r)(b1r)p q Ip, P
a 4 3§ 35 3 kakljblb

3
+2(am) " (bT)p. q ZZp, P -~
a b ak ij bj
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4 2 3. 2 .
- - +
2(a TTa) P i P 2(a TTa) (b m)p Zp

8y % 1 44

4 2 3 2 _
+2(am) P f;ﬁpa p, +2@am)” (b m) pak Llp, Py

A i 3 A B
- 2(a 1Ta)3 (b 'rrb) P, Py Ip - 2(a Tr.)2 (b be)zp P'b Ip, *t
G ki a B P i 34

3
+2(a 7)) (b’n’b)Pa P, ZZp, P +

k Pkij 2103

2 2
+2aTm) b m)p. p, ZZp p *+
a ‘ b akbkij a; b.‘i

4 2 3
-
+@m) p, " Zp, q +2(am) (b"b)Paka Zp, 4

I R R ] ki 3

4 2
qa-(aﬂa)p Zip vp, *

+(a1ra)2 (® vrb)2 pbzzpa
. ki %i % if3 "1 7]

3
+2a.m) (b T)p. P E p. P, -~
a b e bk 1#5 a aj

2 2 2
~@am) " (m) p “LZp P )+
a LI A

-1 2 2 3

4
q +(m) p
K k Ok LI

2 2 3
- 2am) T p g Ip ~-2@am)bTW) p q Ip -
a b bk bki a; a b bk bk i bi

3 4
-2(am)bT)’p q Zp -20(67)p gq Lp +
a b’ P, %oy 5 Fay b’ Pb, b, 3Ty
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P, +®v)pbqb22% %

+ (a wa)z (b nﬁ)z P, % L20P,
k “kij 0% k ki j

3
+2(am)®dm) p. g ZEIp_ p, -
a b bk bk 13 ay bj

2 2 3
2@w)" (™) p. P, p, -2@w)dbmT) p p. Zop
a b akbkibi a b akbkibi

2 2
+2(am) (bTW) p p. ZZIp, P+
a b Tayp by 5 4 by o3y

3
+2(am)(®dPT)" p p, LZp_ p -~
a b akbkij b bj

2 4 2
pr - 2(b 'n'b) pbk Zpb +

3
2(a T)(b T)" p
a b" by By i

2
Zprp +2(bTr) Py, ZZpb pb'*'

+2aT)®b ) p
a b b
k 1] 3 kK ij

2 2
+ (a Tra) (b Trb) pak T pbi qbi+2(a TYb T ) P kpka pbi qbi+

4 : 2 2
+ (b 7mm) p Zp q, -(am)" (1) p EZp P
b bklb b a b akl#_'jb b

3 42
-2(am)(® ™) p p. ZZp,_ p -(bm) p ZZp, p.)1.
a b bk. i#3 b b b bk 143 bi bj

(5.22)

Again, with considerable simplification, (5.22) can be written as

_ _ _ =4
var(rk)—(a’rra+b7rb a'n'ai.:pa:.L bnbipb) X
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-1 4 2
XIn "((a7) (p. q.  =-2p 2p, +p “Lp, +p EZP P, )+
a a % %1% % i i 40

3
+ (am)” (bm)(2p ¢ -2p Ip. -2p Ip, +
a ey T ey ey i Py
+ 2p Zp + 2p EZpa pb)+

p
a by gy i3 21 Py

2 2 2
+(@mn) (bm) (p, q -2p_ Ip, +p Zp, +
a b & 3y a i Py b g 3

+p ZZp p )+
k13 b b_]

+

2(a “a) (b m ) pak(pak : - pbk i P i) +

2 . -\2
+2(am)” ®bm) p (e, Ip -p Ip )+
%% %1 "1 ki ¥

+(am ) (b m ) p. (Zp )(p, I P, - P, Zp )+
5 by by a3 g by

+(am ) (b ) p,. P, Y. Zp,. -p I P, )) +
a bkl i akj bj ka 3

+

-1 4
n, ((b7m) (p, q - 2p, Zp +0p 23 p, +
b b by B b g by B 5 by

+p,. LZIZp p. )+
bli bl b

3
+ (am)(dm) (2p, q - 2p Ip, - 2p Zp +
a b bk bk bkl b bkl i

+2p p,. Zp, +2p, ZZp p, )+
bkibi bli ay by



69

b

3
+2(am)bm) p, (p, Zp =-1p )+
©oatt bt b by 4 Ty aki

2 2
+2(aT) b)) p_(p, P
a b Po by g Tay  Pay g

pb)+

+(a'rr) (bﬂ) P (Zp)(p Zp, -p, LZp )+
3.y by kaJ. J.b.

+ (am ) (b m ) pbk(Z P, )(pEik : Py, - pbk § P 1))] (5.23)
i 3 i

0f special interest here is the case in which all value groups die

according to the same mortality characteristic, i.e.,
P, =P = 1 for all 4.

Then, equation (5.23) can be simplified:

var(r)) = ((am_ +b m)(1L - i pi))“‘

-1 2
x [n ((awra)“(pqu-Zkapi+pk Lpy +pk22pip)+
i i ij

Bl

3
+ (a T )7 (b M) (2p q ~ 2p i Py = 2p i p; +
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2
+ 2p §p1+29k§§pipj)+

2 2 2
- +
+(@m) (b m)” (p 9 - 2p, i P; * Py 'i‘ p; P i ;2 Py Py)

-1 4 2.
+o (b ) (pqu-?-pki‘piwk ipi+pk§§pipj)+

2
Zpi+

3
+ (a wa) (b ‘n‘b) (ZPk qk - Zpk i pi = 2pk i Pi + 2pk i

2 2
+ 2pk§§pi Py) + (a )T (b M) (py g - 29 i p; +

(5.24)
Equation (5.24) can be further simplified to become
var(r,) = (a T +b1r)'4x
k a b
-1 4 3 2 2
X [na ((a Tra) + 2(a Wa) (b 'ﬂ'b) + (a Tra) (b wb) ) +

+ nb‘l((b vrb)‘* +2(a T (b nb)3 + (b vrb)2 (a ‘n'a)z)]

® - &)
X k-1
(1- 121 p;)
-2, -1 2 -1 2. R - sz)
= (a Tra+b Trb) (na (aﬂa) +nb (bnb) ) — T (5.25)

(- % p))
i=1 *
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k .
where Rk = R (5.26)

(1- I p,)
=1 1

This is known as the population (true) retirement ratios for the kth

age interval. It is of interest that the variance of rk's is increasing

in Rk for 0 < Rk £ 0.5 and decreasing for 0.5 < Rk < 1.

B. The Case of Several Value Categories

The modei for multi-value category is essentially an extension of
the model for two-value classes. When a property group is classified
into more than two-value groups, it becomes a model for multi-values.
The practical example of this model may be thought of as property groups
consisting of several vintages that were installed in successive years.
The younger vintages of similar property may have different values
(costs) than ‘the older ones. Inflation, technological change, etc.,
ﬁay be responsible for the units of similar propérty having different

values.

1. Derivation of observed retirement ratios

In a manner similar to that used in (5.1), the retirement ratios

th ; .
for the k age interval can be written as

M
I a_ na _
_ s=1 sk
T T TH PR (5.27)
I a na - X I n
s=1 s i=1 s=1 asi

and as before, (5.27) can be expressed as
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Za wn p
s 5 8 ay .
T, = - - — (5.28)
L a T, o= EXa m p
s s is ° % 35

In terms of A Ak and € (5.28) can be written exactly as (5.3).
2

Hence, r, can be approximated by linear order terms, i.e.,

k

¢ b

= _E L ..\ S
St g A LN e ) (5.29)

2. Derivation of large-sample covariance of 2% and T,

It follows from (5.29) that

¢

k ¢
.r, =¢ +¢g 7 +¢€° k
e S
and
0 )
_ e o %
T, = 0t €y %, TELTG -

Therefore, the covariance of T and r, can be exactly written as

(5.16), i.e.,

_ _ =2 _ -2 x
cov(rk, rz) = (A Zili) (A glj)

X [(A-Z2A) (=24 covle, g) +
i j J

+ A (A =L A)(var(e, ) + I cov(g,, €.)) + -
2 ; % k 9k k* ¥j
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+ Ak(l - § Aj)(:)"i cov(ez,e i)) +

+ Ak )\2(2 var(ei) + Z z cov(ei, Ej))] . (5.30)
i i#j

And, the covariance and variance of €'s of (5.30) can be evaluated by

(5.7) and (5.8), resp'ectively. The substitution of A, }\i's, variances

and covariances of ei's into (5.30), gives the covariance of T and r,

as

cov(rk, rz) =

=2 -2
=(Zaswa—§2ar7ra I)a) (Zauna-§2av11a 1Da.) X
s s ir r  ri u u jv v V]
X [=(Z a T - § z a TP, .)(Z a ™, - § z a T, P, .) x
r r iv v Svi u u jw w Wi
2
(as “as)
x (Z —F— 7P, P, Y + (& a_ Tra pa Y@< au ﬂau -
s a sk “s? r r ‘! u
2 2
(as Ta ) (as ﬂas)
- fZam p )ET—2S—p q ~-II - X
iv ¥V 3 i s l'las 8k %k j#k ag

Xp P, ) + (% a, m, P, (T a moo- § 5 a T P, ) X

3sk sj- T r .tk u u Vo3 vj
2
(as Was)
X(I———p P )Y+ (Za ™ p MZa ™ P ) X
is na 30 i r T % %%k u ' 3w )
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(a, )2 a7 )7
X (CE——=2—p q -III——23—p p )] (531)
- is nas 351 %1 i3 s n, 3si g3
S

After the multiplication of the terms in the numerator of (5.31),

the covariadnce of T and T, can be expressed as

cov(rk, rz) =

= (2 a_ T, - T a m P )-'2 (z a T, - I a T P, )-2
s s ir r 2ri u u jv 3y vj
' ' 2
T
(as as) |
X = —_—5 T T
[-zz: n (ar a )(au a ) P, P, +
sTu ag r u sk "sf
.2
(as Was)
+ZZZI—— (a_7_ )a 7 )p P p +
isrv nas r ar v ay ask asz avi
2
(as was) .
+ .~ -
g LIl n (ar Ta )(aw Ta ) Py Py Py
jsrw ag T W sk “sf “wj
(as LA )2
-LLZfr——>=2—(a 7w )a w )p. p. P P, +
ijsvw nas Vo3, W o3, 8k Fgp i awj
2
(aS ﬂas)
+I L (a_7w_J(a 7 )p q P -
sru nas r ar u au ask ask arR
(a, 7 )2
~-Zrff——=(_m )Xa 7 )p. 4 DP. P. -
isrv . na T ar voa, ask 85k 2rg avi

s



75

' 2
(as ﬂas)
I —m—m=— (ar T )(au LA ) P, P P, +

jfk s ru nas r u sk 2rp s

2
(as ﬂas)
+IfLZ % —m— (ar Lo )(av LN ) p, P P P, -

jk s r v nas _ T v sk 32 3vi gy

[

' 2
(aS L )

- —2E_(a 7 )a 7w ) P 2 P +
israu na r a wa "3 2k %

s
2
(aS m )

+IIllf—23— (@ 1 )@ ™)p p P P +
ijsrv nas T 8 V3 3y 3 Zi 3y

2
(as LA )

S
+I11— (a, 7 )@, "™ )p, 9 P, P, ¥
israu a b o u si “si “rk “ul

S
2
(as “as)
+ZZZZZZ.——n-——(ar7Ta)(aVTTa)pa P, P P, 1.

ifijjsrv ag r v si %3 %k 4v2

(5.32)

After considerable simplification, expression (5.32) can be presented as

cov(rk, rz) =

-2 -2
(Za m ~-ZLZZa 7 p )Y (am =-LZa T p )
s 5% ir T %% 3 S s jv U &% By
(a, T )2
X [ELL——23—(a_7 )a 7 )p (p -p )+
srTtu Ba T 3 v 3y "3 3 3y

S
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2
(asﬂas) _ :
+ZLZ———(a mw )@ 7T )p (p P. -P p. )+
isru nas Toa, w3 %y 3k 81 %k 31
: 2
(as‘iras) .
+LIZLL ———(a_ 7 )a 7T )p. (P P -p  p I+
jsrau nas P oay uwa, g 3 arj 3rp asj
2
(asﬂas)
+ LI ——(a_m )a 7 ) P P, ~P_ P, P_ )
isru naS roa, ua, ay 2k 2wl 4k arl i
a, )2
S
* i § i: f‘i nas (ar Trar) (au Trau) pasgl X
x (p P p -p p p. )+
%k Zvi afj Sk i avj
2
(asvras)
+SZzz: = (arva)(qvﬁa)pa X
ijsru a_ . r v sj
x (p P P -p 2 p. )1 (5.33)
3k 2y i .k av2 851

If M distinct value groups have the same life distributionm, i.e.,

.= P, . for all s, r, and i, then it could be easily observed that
si ri

cov(rk, rl) = 0.

Py

3. Derivation of large-sample variance of L. .

The variance of retirement ratios within each interval can be com~

puted by the following formula.



77
var(x,) = (A -Z A )_4 [(A -Z X )2 var(g,) +
k 1 i : i i k

+ 2Ak(A - i Ai) i cov(ek, ai) +

2
+ (L var(e.,) + £ Z cov(e,, €,))] . (5.34)
Ak i i 14 i’ 73

The covariance and variance of €, can be evaluated by (5.7) and (5.8),
respectively. A substitution of A, Ai's, covariance and variance of €

i
into (5.34) permits the variance of 1, to be expressed as

var(rk) = (I a T - Iz a m P )-4 X
u au iv v avi
2
(a_7m_)
2 (z " s P, q )
x[(ta . ~gza m, P, ) -
u u au ir r ar ri s naS ask ask
-2(za g p_ )fa v -Iza q p. )x
r T % %k oo U jw v oay awj
(a_ ¢ )2
Sas 2
(T r— p, P, )+ Qa7 p ) x
is a sk “si - r r “rk
(a1 )2 (a1 )?
Lz * % 5y 8 p. p. )]
x ——9p q - —_—
is nas 851" 31 i#j s naS %1 %3

fori, j=1, 2, ..., k-1

s, ¥, u,v=1, 2, ..., M. (5.35)
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Multiplication of the terms in the numerator of (5.35) yields

- - =4
var(rk) (E a T )?Zas TP, .)
s 1is s “si
2
(asﬂas)
X[ZZZ——="—(a 7_)(a_7_)p q =
suv nas u au v av 2k ask
2
(as"as)
~2LLLI——(a 7T )@ m™)p q p, +
isru nas uoa, r a 8k %k %ri
2
: T
(as aS)
+ZZZL12 (a7 Ya. T )p q P P -
ijsrw nas T g Vo, 8 gk % wj
2
(asTfaS)
-2LI1ILZ (a_m JY(a_ 7T )p P P +
isru nas 8, U g %k %k i
: 2
(aSTfas)
+222}ZZZ"——H———(arﬂa)(aW'ﬁa)Pa Pa Pa.Pa."'
ijsrw ag r w sk "rk “si “wj
2
(asﬂas)
+ZIZZIL—— (a7 )a 7T )p P P q -
isru na's Toa, vay qm %k %%i %
(aTT)2
zzzzzsas(w)(w) p )
- —_— (a a P P P .
i#Fjsru nas Toa v 3y %k %k % asj

(5.36)

After comsiderable simplification, the variance of r, can be expressed

as
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var(rk) .(? 3 T, LIa s Py ) 7 x

s s is s si

-1 2
x[LZZn “a 7w ) (a 7w da w )p. q -
suv 3% S & voad, voa, gk 3sk

-1 2 .
+
(as Ta ) (ar Ta )(au Ta ) P, P,

~-2XZZIZIn
isru s s T u sk ri

a

-1 2
+ZZZZn (a_7m ) (a_m )(a_ T )p P 2 +
i a S & ra uwa ‘"a3x gk 3si

-1 2
+ZZEXZZIn (a_7m_ ) (a_7m )@ 'm )p p P +
ijsrw % S &g T oag W 8, "3 g awj
+253522a Ya 1 )2(a 1 )a T ) X
iAs rau ag S as r ar u u
xp. (p P -Pp p. )+
S e 4k i
+2222%n Ya 1% @ 1 )a T ) X
PR a S a r a w a
1] SsSTrTWwW S S Tr w
X p p. (p P - P p. )+
2k awj 8k 3si %k %ri
+2222%n Ya w2 m )a T ) x
. S a r a w a
ijsrw s s T w
xp. p_. (P, p. =-p. p. )] (5.37)
8k %si sk awj 2k asj

for i, 3 =1, 2, ..., k-1;

S, Ty U, V, W= 1, 2, ev ey M.
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Of special interest is the case in which all value-groups are sub-
ject to the same mortality characteristic,
P, TP, = P, for alls, r and i.:
si ri
Then, (5.37) can be simplified to:

a

-4
var(r,) = ((Za_ 7 )@ -Z p,)) X
k s S s i i

-1 2
X [TZ EZn (as was) (au T

Y 7 )(p, g - 2p, Lop,+
suv % v oa, k *k k i i

u

2 2 |
tp Ip,tp )7 (5.38)
1 i '

Equation (5.38) can be written in a compact form; that is

' 2
M _ M _ ' (R - )
var(rk) =(L a1 ) 2 (Z n 1(a i )2) ——jﬁijz—;k——— (5.39)
s=1 S g s=1 % s as -
i1-1I pi)
i=1
where
= Pk
Ry -1 °
1- 2 p,
i=1 *

For M = 2 equation (5.39) gives

-2 -
var(r,) = (a, ™ +a, T ) (n
k 1a, 7274 2 1 2 2

2
§ (R, - R°)
k-1
(1- L p.)
i=1 *
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The above equation is essentially the same as equation (5.25). °

C. The Case of a Single Value Category

1. Expression of observed retirement ratios

The model for the single value category is essentially equivalent
to model based on item counts. Again, the assumption is made that there
is only a single vintage group which is composed of n large units.

The observed retirement ratios for each age interval can be derived

from (5.1) by putting the restrictions

a=1and b = 0:

-k
T, = =) . (5.40)
n- I n,
i=1

Note the index 'l' is dropped since there is only one vintage group.

Further, T, can be approximated by the linear term expression:

9 "
r, = ¢k + € X; + ¢k-fx—:~iz;y (5.41)

where
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2. Derivation of large-sample covariance of T and Ty

As in the use of (5.16), estimates of covariance of retirement ratios

can be computed by

~2 -2
cov(rk, rg) (- i pi) (1- ? Pj) X

3

x [-(l-§pi)(1-§pj) = -pk(1-§pj) Zpy Pyt

i k] j i

P, 4 P, D,

+p(1-Tp) Eopa-zp) 1 £

i i j#k

P, q P. P. :

i’i_ i™]
tp P i - P I (5.42)

i i#]

After further simplification, (5.42) can be written as

cov(rk, r) = n-l(l - Pp )-2 1-73 P.)-z.x
L i 1 j 3

x [- + .+ .- . P, -
[-p P, pkplipl Py Py ZP; pkpzi:;;plpJ

2
pkp2§p1+pkpzigpipj+ka2-Pk PL

2
pkpgipi"'pk Pzipi+pkpz§§"ipj

2 2 . 2
~ Pp Py § P; ~ P Py § P, + 1 pfpkngpi Py Py E Py

2
Iz P; pj + P pz E Py ]=0. (5.43)

'Pkpzij
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The above covariance of T and T, is literally zero. This is intuitively
“true since there is only one value group, hence, all units in the proper-

ty die according to the same mortality characteristic.

3. Derivation of large-sample variance of T

The variance of retirement ratio in the kth age interval can be
evaluated as follows. As when formula (5.34) is used, the variance of

rk can be written as

var(s ) . cov(; R ;.)
var(rk) = ————13—5 + Zpk z ———li——l-g
(1-2Zp) i(1-2ZXp,)
" i1
i
2
Py ~ A o~
e (Z Var(Pi) +I2Z cov(p;s P.)) - (5.44)
(1-Zp)" i i#j J

Variance and covariance of S's can be computed by (2.3) and (2.4), re-
spectively.
A substitution of the variance-covariance of p's into (5.44), per-

mits the variance of rk to be presented by

P, 4 Zp p,
(1-2p)) (1-2%p)
2 )
Py § P; 4; = Py i#g Py Py
+ J ). (5.45)

4
(1-Zp)
P!

After further simplification, (5.45) can be expressed as
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2
var(r) = g "k 7" pk 3
(1-2py) (l-Epi)
i R
2
&, ~ & ]
oy » (5.46)
i

where
. Rk is defined as in (5.26).

The variance of retirement ratios may be computed by the other

formula:
1, N 2 2
var(r,) == (I P, d.” - (£ d. p.))) (5.47)
knj=lJJ 373
J
where
Brk
d. = = for =1, 2, .. N. (5.48)
J Pj

For details of the derivation of (5.47), see Fleiss (1982).
Equation (5.40) in terms of p's may be written as

Py

T is then derived with respect to'ﬁj for j =1, 2, .. N:

Ty 1

J
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or )
k k. 5. for j=1,2, ..., k-1 (5.49)
op (1-2_,')
|
Brk )
— =0 for j = k+1, k+2, ..., N.
apj
N k-1 P P
I p,d = I p, kA,_+ —
=1 3 3 =13 a-:1p) (1-20p.)
- Y5 L3
j 3
zﬁj .
=6k< 1A L 2). (5.50)
1-z pj) Q-2 pj)

J J

- e

Upon the substitution of (5.49) and (5.50) into (5.47), the variance of

T can be written as

a2 ~
P P
Var(rk) = ?]1'-[ ___._k_“___z T pj +____ISA_._§ -
(1 -3 pj) j (L-2Zp.)

k| h|

_ Skz L 3 2) . (5.51)

(1-~-¢% pj) (L-2p.)
3 i ,

After further simplification, (5.47) may be written as

A , A2
y <1 Pk Pk .
K n (1-1 3y (1-25j)3
j j

(5.52)

var(r
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The substitution ﬁj = pj for all j into (5.52) gives

2
1 Py Px
var(r,) = = - .
k “(<1-Zp.)2 (1-zpj)3)
i ]
Thus,
2
(R _-R°)
var(rk) = & k—ik (5.53)
n(l- I p.) '
j=1 7

where Rk is defined as in (5.26).
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VI. A MODEL FOR THE JOINT DISCRETE DISTRIBUTION

OF VINTAGE GROUP AND LIFE

The model discussed in Chapter V is essentially derived from the
single vintage. The classification by value is statistically sound.
However, thé value~category may not exist in the accounting practices
of an industrial firm. What usually is available is the classification
" by vintage.

Consider now property groups which are composed of several vintage
groups. Needless to say each vintage group was installed during differ-
ent years. It seems plausible that each vintage has a different life
distribution. Management policy, economic conditions, inflation, tech-
nological breakthrougﬁs, etc., all are responsible for each vintage hav-
ing different mortality characteristic.

The assumption that all vintage groups have the same life distrib-
ution is usually made to simplify the analysis of data. It can be shown
that under this assumption, the asymptotic covariances of the retirement
ratios are zero, hence, weighted least square (or even least square) may
be'employed in fitting linear models to the retirement ratios.

This chapter presents the derivations of the retirement ratios and
the corresponding estimates of the covariances and variaﬁces for indus-
trial mortality data which depreciation engineers commonly use. It can
be shown that with some modifications, the model in Chapter V remains

applicable to these data.
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Typical industrial mortality data can be cast by two-dimensional

contingency table:

Table 1.

Year of Size of Age at retirement

placing vintage 1 2 3 4 5 6 7 8 coe
! 1 M1 P12 ™13 " "5 P "7 M8 o
2 ny Ba1 P22 T2z T2p P25 Moz T27 e
3 nj 831 M2 P33 M3y P35 P
b 4 Bal Pa2 P43 e T4s ccC
> B . Bs1 By P53 Ts o
6 "6 61 Te2. ez v
7 n, D,y Dy e
8 ng ng, .

The following definitions will be adopted:
n,, denotes the number of item units from the ith vintage

Y retired during the age of interval j

n, = z nij represents the original number of item units from

J
the ith vintaée group that are put in service at age zero
A s s . . .th
p.. indicates the observed proportion of units from the i
vintage retired during the jt age interval
th

p.. represents the true probability of a unit from the i
vintage retired during the jth age interval under what-
ever life distribution is assumed

ni . : . .th
is the proportion of units from the i

'n‘ =
ij n.+n. .+ ...
J i n1-1

vintage to the total units from all vintages which were
included in the study



=Zm.Cp,.)=Zm,.=1
i 1 j i i
e indicates the last (most recent) year that is included
‘in the study of retirement experience
L denotes the width of the experience band1 used in the
study
w represents index of the width of experience band used

in the study, w=1, 2, ... L

A, Two-year Experience Band

1. Derivation of observed retirement ratios

To better understand the development of retirement ratios for
mortality data from Table 1, consider a two-year experience band which
begins with year six and ends at year seven. The placement band used
in this case is years one through seven.

With the definition of retirement ratio,

1The calendar years for which the retirement experience of the total
inventory (units or dollars retired or survives) is observed is called

the experience or observation band.
The time period delimited by the year of installation is called the

placement band.
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T, = retirement ratio for the first year.
_ the number of units retired during the first age interval

- the number of units surviving at the beginning
of age interval one

(6.1)
Notationally, (6.1) can be written as
I i )1
1 ne + n,
" Mer+_ %7 M (6.2)
n6 + n7 n6 n6 + n7 n7
With the definitions of T's and p's, (6.2) can be expressed as
T3 = Te1 Per T 71 Prp
= Te1(Pgy = Pgr) + T71(Byy ~ Pyp)
* o1 Pe1 T T71 Pr1 (6.3)
In terms of Al and €,» ¥; can be rewritten as
T, = € + }‘61 (6.4)
Similarly, the retirement ratio in the second interval
n., +n
Ty " a. +n SE (n 62+ n,.) (6.5)
5 6 51 61

When both numerator and denumerator of (6.5) are divided by ng + ng, it

gives



s . P52 "s . "2
n. +n n + n. +n n
r = 5 6 5 5 6 6 .
2 ng +ng ) ( ng . Ny . o, . n6l) (6.6
n5 + n6 n5 + n6 n5 n5 + n6 n6

Again, with the definitions of T's and p's, (6.6) can be written as

Ten Pen + T, P .
., - s2 %52 * ez Pez 6.
1 - (m5y Pgy + gy Pgy)

In terms of €'s and A's, (6.7) can be expressed as

Aen + € .
R v (6.8)

2 1-Q; teg

Similarly, rq can be expressed as

Tyw Pyot Ten P
‘, - 43243 ¥ 753 P53 : 6.9)
1= (myy Byy + Mgz Py + Tyq Pyy + Mgz Psy)
or
A + €
. 43 ¥ 43 . (6.10)

3 1- (141 + AAZ teqt 842)

It is important to note that A's and €'s keep changing from one interval
to the next.
The form of r's resembles the form of 29 in (5.3), hence, the linear

Taylor approximation remains valid. However, the covariance formula is

slightly changed due to the change in values of A's and €'s.
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2. Derivation of large-sample covariance of I and r,

eer—

The covariance of r, and r, can be derived as follows. As in (5.5),

ry and r, can be expressed, respectively, as
T T
“and |
A ' € € .
TR Ik e wy e D A
' 51 51 (1-2.,)
. 51
With the usual definition of covariance,
(r;s 1) = F—2— cov(e P )
cov(ry, T, = cgv 520 €61 5~ cov(eg s €
51 (1-x.,)
51
.—.___1_-__. [(L - A.,) cov(e €.4)
(1-2 )2 51 52° “61
51
+ ASZ cov(ESI, 561)] . (6.11)

According to Lemma 1 (Chiang, 1960a), the number of units retired
from the ith vintage group is distributed as multinomial with parameters

n, and pij for =1, 2, ..., N. Hence, it follows from (2.3) and (2.4)

that .
. Pij 944 |
var(f,.) = + (6.12)
ij n,
and
P.. Pi.y
=3 for 4. (6.13)

cov(ﬁijﬁ ﬁij') == n

i
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The covariance terms in the square bracket of (6.11) are computed as

follows:

COV(Esz, 561) = COV(_"Tsz(PSZ - psz) + ‘"'62(1?62 = p62)’

Te1Pe1 = Per) + 7Py~ 1))

COV('“61(P61 - p6l)’ “62(1)62 = P62))

=M1 ez cov(Pgys Pgp)

Equation (6.13) gives

P, D
~ o~ y_ _Pe1Pe
eov(Pgy» Pga) = ng
Therefore,
"61 62
€ € = -2 02 ]
cov(€5ys €gp) o, P61 Pg2
€ _ € = T (5 - T (53 =
cov(€sys €gp) = cov(Tgy (g = Py + Mgy (Pgy = Pgy)s

Te1(Pgy = Pgr) + T71(Pyy ~ Pyy)),
= A T_ (p.. -

=T 3
61 g2 var(pgy)

(6.14)
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Equation (6.12) gives

~  _ Pe1 Y61
var(Pgy) =~ —

Thus,

Te1 62

cov(Egys €gy) = ng Pg1 961 °

The substitution of (6.14) and (6.15) into (6.11) yields

.. _ _ -1
cov(rl, rz) = (1 Teg Pgq = Teo P61)

P., P
61 P62
2 Pg1) (=Tgq T2 —n-;_)

X [(1 =75y P5y = Tg

P.. q
61 Y61
+ (Tgy Pgy + Mgy Pgg) (Mg Tey N

)1 .

(6.15)

(6.16)

After the multiplication of the terms in the numerator, (6.16) can be

written as

_ - _ -1
cov(rl, r,) = (1 sy P5p = Tep Peq)

P P P Pgq P
. Pg1 Pgo 51 Pe1 Pg2
* [ Mgy Tea n + Tso Te1 T2 o

2
2 Pe1 Pga Pe1 Y61 Ps2
TT1 "2 T n, T "s2'e1 62

2 Pg1 Y61 P2

+ o1 T2 n, 1.

(6.17)
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Under the condition that all vintage groups have the same life

distribution,

Py = Ppos for all i and k:

cOV(.rl, rz) =

2
P, D p.“p
-1 1P 1 P2
(L =-pp) " [- Ty Ter o " "2 "1 "e2 Tm,
2.2 p P, 4, P P, q, P
2P Py 19 Py 2 P19 Py
+ M1 62 n + Tsa Te1 T2 n + Te1 Te2 ng 1.

(6.18)
With the substitution of q = 1- Py into (6.18) and after simplifica-
tion, (6.18) can be expressed as

ovr, 1)) = e - T Ty ey T T+ T 7]
OV T2 T 1)) 61 62 52 ‘61 62 61 62
(6.19)

But
~Te1 T2 * Te1 Te2(Msg * Tg) =
“Te1 Moo + gy Tga(D) = 0 -

Hence, cov(rl, r2) =0
B. Three-year Experience Band

1. Derivation of observed retirement ratios

Suppose now the band width of experience is extended to three years,

using years seven, six and five.
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Referring to contingency table (Table 1), the retirement ratio at
the first age interval can be written as

N5y + gy + 0y

r, = (6.20)
1 ng +n,+n,
- n %51, n %61 7 "71
n5+n +n7 ns n5+n6+n7 n6 ns-l-n6+n7 n7

= M5y Py + Tep Pey * g1 Poge

In terms of A's and €'s, (6.20) can be represented by

£, = Agy + €5y (6.21)
where
51 = sy Psy g1 Per ¥ 71 Pr1
and
€51 = 5Py = Pgy) *+ Mgy (Bgy = Pey) + Ty (Byp - Pyy) -

The retirement ratio for the second interval can be written as

. P42 T P5p + Ty . . (6.22)
n, + ng + n, - (n41 + gy + n61)

If the numerator and 'denumerator of (6.22) are now divided by

(nA +n_ + n6) then

5



S Y. . . Us2 S . 62

rz ) n4 +n +nn6 n4n n4 + n5n+ n6 n5 n4 +-:5 + n6 11“6
1 ( 4 2 S 5 .'51+_ 6 . 61)

n, + n. + ng mn, n, + ng + ne ng; -, + ng + ng g
(6.23)

In terms of 7's and p's, (6.23) can be expressed as

Moo Pro + Ten Py + T, P
- 42 42 52 ©52 62 “62 . (6.24)

1= (Mg Pyy *+ Mgy Pgy + Mgy Pey)

T2
With the definition of e¢'s and A's, (6.24) can be written as

€, + A
r. = 42 42 (6.25)

2 1- (641 + AAl)

‘The form of ry and r, remains the same as the form of 2N of (5.3).
Therefore, the first order Taylor approximation to rk's still holds.
Variance and covariance formulas for T, are slightly changed because
of changes in values of €'s and A's from one age interval to the next.
This will become clear after evaluating covariance of r, and T, in the

next sectiom.

2. Derivation of large~sample covariance of T and r,

The basic formula for computing covariance of r, and r, is
a1 -
cov(rl, r2) = 3 [ (A Al) cov(el, 52) + 12 var(sl)].
A(A - Al)
; ' (6.26)

Since Al and €, change in value from the first to second age intervals,

1

formula (6.26) is also changed to become
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= 1 -
COV(rl, 1‘.'2) = 3 [(1 Al}l) COV(ESl, 842)
a-2,
+ 142 COV(€51, 541)]. (6.27)

Covariance terms of € in the square bracket in (6.27) are estimated as

follows.

cov(Egys €,9) = covimy, (Bgy = pgy) + Mg, (Bgy = Pg,)
+ M (Bgy = Pyp)s Tya(Pyy = Pypd + Tgp(Psy = Pgg) + TPy =Pgy)]
= cov(T5y sy = Psy)s Tsp(Psp = Psp))

+ cov(Te, (Pgy = Pgys Ta(Pgy = Pg2))

= Ts1 sy cov(p51, p52) + M1 Mea COV(Pgys Ppy)- (6.28)
But
A Ay __P51P5
COV(PSI, psz) = _n——
5
and
P.. P
A A 61 62
cov(pel, p62) = - __qi;__
Hence,
e, T T, T
S - _Te1 "6 _
cov(€sys 642) = - o Psy Psp o Pg1 Pe2 (6.29)



cov(ESl, 841)
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= covify (B5y = Psy) * Mgy (Pey = Pgy) + Ty (73 =Ppp)>

Ta2 Py = Pyp) + Tsp(Psq = Pgp) + Mep(Bgq = Pgy) ]

= COV['"’SI(Psl - PSl), 1T52(P51 = P51)] +
COV[ﬂﬁl(p61 - pﬁl)s '"'62(1361 - psl)]

= sy M5 Var(psy) + Ty Tgy varlegy)

But
~ | _ P51 9571
var(pgy) =~ —
5
and
~ . _ Pe1 91
var(Fgy) = —o—
6
Thus,
Peq Q q., P
_ 51 951 61 Pe1
cov(Esys E49) =+ Tyy Ty o, * o1 Te2 ng

The substitution of A's, (6.29) and (6.30) into équation (6.27) gives

cov(zry, r)) = (1= My Pyy = M5y Pgy ~ Mgy Pgy)

~1

X [ = Mo Pyy = M5 P53 = Mep Pey)
Peq P P, D
: 51 P52 61 P62
X (= Tgy M5y n, Te1 T62 o )
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Peq 9 Py q
_ 51 951 61 961
+ (Mo Pyp 75y Psy+ Ty Pey) (Tey Pey ng +Te1 Pga2 ng )]
(6.31)
The multiplication of the terms in the numerator of (6.31) yields:
cov(ry, r,) = (L -m,, T,. = Mo, Pey = Tpn P y~1
17 T2 42 ™41 ~ Ts2 P53 T Tgo Pey
Psy P P, P
51 P52 61 Ps2
X [- Ty Tep =4 T~ Te1 "2 T n
5 6
P,; Peq P P,. Py P
41 P51 Psp . 41 P61 Pg2
* T2 T51 50 ng * 42 Te1 Te2 ng
Pelp Pzq Pgq P
2 51 Pso 51 Pp1 Pe2 |
* M5y Tsg ng * M50 Te1 Te2 E
Peq Pey P p.%p
51 P52 Pey 2 Pe1 Pg2
* Ts1 51 T2 ng * Te1 o2 ng
P P q P P q
. 42 P51 951 42 Pe1 Y61
T T4 53 Tso n * Tho Te1 62 ng
Pen Qeq P Pe, Poq G
2 P53 951 Psp 52 Pe1 Y61
+ 751 Tso n * 55 Te1 Te2 n,
Pey Geq P P,y Q.4 Py,
51 951 Pg2 2 P61 %61 Pg2
+ sy Ts2 Teo '""'?ﬂ;“"'* Te1 62 T om, 1. (6.32)

Under the condition that all vintage groups are subject to the same

mortality characteristic,

Piy = Py for all possible values of i and k,
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-1
cov(ry, 7)) = (1= M5 Py = Mgy Py = Mg, By)

Py Py P Py

ey —m = Mo Wy~
51 "52 " n, 61 "62 " ng

X [-7

2 2
P, p - P, P
1 P2 1 P
* T2 Ts1 M52 n * Tu2 o1 Te2 n
2 ‘ 2
2 P P P; Py

+ M5y Mgy ng + M50 Te1 Te2 o

52

2 2
p.°p p,“ p

1 P2 2P Py
* 51 M52 T2 o, ;

Py 47 P, : P; 4, P
S0 M S 19 P
g

T 42 Te1 62 ng

+ Mo Ts1 s

2 P19 Py Py 941 Py

+ M5y Tsp a * Tso Te1 T2 a

P, 4y P P, 4, P
191 P 2 P19 Py
*T51 M52 Te2 T a, + Te1 Te2 o 1. (6.33)

With the substitution of q = 1- Py into (6.33) and after further

simplification, (6.33) can be written as
cov(rl, rz) =

-—p—lﬂg—[n_l(-nw+1rw1r+1r 1r2+7r1r1r)
(1 - Pl) 5 51 52 42 "51 "52 51 52 51 "52 "62

-1 2
+ng (= Moy Tao + Thp Moy Tea + sy Mgy Teg + g Mg )1 -
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But
= Mgy Mg + Mgq Mop(Myy + Mgy + Te))
== TMgy Mey * Mgy Myy 0 1=0
Similarly,
= Te1 Te2 * o1 Tea(Myp * sy *+ Tgo)
=<1 Tg T Tep Mg " 10
Hence,

cov(rl, r2) =0

Thus, for the three-year experience band covariance of r; and r, remains

asymptotically zero.

c. L-yeaf Experience Band Based on Item Counts

1. Derivation of observed retirement ratios

Analogously, for the case of data aggregated over vintage groups,
vhere (e) represents the most recent vintage year, and (L) represents
the experience band used in the study, the retirement ratios for the

kth age interval can be written as

L
Wzlne-w-kﬁﬂ,k
T L k=1 L (6.34)
Z n - I I n .
w=1 e-w-k+2 j=1 w=1 e-w~k+2,j
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When the original data recorded in terms of units of dollars,

r, may be further represented as

L
_ —l Ze~w-k+2 “e-w-k+2,k
'« T L 1 L (6.35)
I a n - I I a n .
w=1 e-w~k+2 ~e-w-k+2 i=1 wel e-w-k+2 “e-w-k+2,1i

It is worth noting here that ne-w—k+2,k and 3, gk DAY not be avail-
able. Only the lump sums in dollars may be known. For the purpose of
this study assume that each vintage size, Ny _y-k42° S known. To illus-
trate how formula (6.34) works, suppose the most recent vintage year,

e =17, and let L =2 and k = 3. Then,

2
n
7-w=3+2,3
_ w=1 >
3573 7 32 (6.36)
I n - I n .
W=l 7-w=-3+2 i=1 w=1 7-w=3+2,]j

If each term in the numerator and denumerator of (6.36) is written

out, then
L 53 P43
3 ng + n, - (n51 + n, + N,y + n42)
L
Both numerator and denumerator of (6.34) are now divided by I n K2
w1 &V +

which gives
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5 e—w-k+2 ne—w-k+2,k

w(g ne-w;ﬁ+2) ne—w-k+2
i De—w-kt2 Pe—w-k+2,1 (6.31)
1-373 e-w e-w .
i

w (5 Do—w-k+2)  Pe-w-k+2

Tx

If the definitions of T's and p's are employed, then (6.37) can be

written as

f] Te~w-k+2,k Pe~w-k+2,k
r, = . . (6.38)

7re-w-k+2,k‘pe-w-k+2,i

In terms of A's and €'s, (6.38) may be represented as

A ) + €
_ e-1~k+2.k e~-L~k+2,k
' T 1-2 A -Zc ’ (6. 39)
; e-L-k+2,1 T [ “e-L-ki2,i
where
xe—L—k+2,i = 5 ﬂe-w—k+2,k pe—w--k+2,i
Comtkt2,i = = Memukt2,k Pecy-ks2,T Pe—w-ks2,i’

fori=1, 2, ..., k-1;

w=1l, 2, ..., L.

As before, r, can be approximated by linear order terms of the Taylor

expansion:
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Eer-k#2,k Pe-1-k+2,k

r, = ¢ + —
k- fe-L-k#2,k Mokt 2.k

g° ¢e—L-k+2 3 k
T — 30
e-Lok2,k (T = A " o)

+

where

k-1
=ZA
i=1

A

[
e-L-k+2,k e-L-k+2,1i

k-1
=7 e

1=1 e-L-k+2,1

-]
& e-L-k+2,k

" and 1
¢ - e~-1-k+2,k
e-L-k+2,k (1 -2 e-1-k+2,k)

2, Derivation of large-sample covariance of Ty and I,

(6.40)

Asymptotic covariance of retirement ratios in the first and second

intervals can be derived as follows.

For k = 1 and k = 2, (6.40) gives

T = Ae141,1 F Cemrin,1

and

Ae—L,Z

r. = + ee-L’Z + }\ EE-L,l
2 A=A ) Q- el g Ay P

(6.41)
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By the definition of covariance:

_ -2
cov(ry, T,) = (1 - Ae-L,l)

x [(1 - Ae—L,l) cov(e )

e-L+1,1° Fe-1,2

+ A cov(e )] (6.42)

e-L,2 e-L,1° Se-1+1,1

-

Before the computation of the covariances of e's in (6.42) a few useful

formulas are derived:

)

cov(e £

e-L~k#2,1’ “e-L-2+2,]

cov[E T

n

emu-kt2,k Pecu-kt2,1 = Pe-u-ict2,i)

z )]

w 1re—w—2+2,2(pe—w-2+2,j - pe—w—2,+2,j

)s

z cov('rre

. =242,k Pew-42,1 ™ Pemy-242,1

Tr'e-w-2.+2,2,(pe--w~-2,+2,j - pe—w-2,+2,j))

+

i uf, wzf{:v(we-u—k-!-Z,k(pe-u-k+2,i " Pomy-kt2,1)

Tre-w—2,+2,£,(pe-w-2,+2,j - pe-w—2+2,j))
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L+ _,
== I g ﬂé-w—2+2,k 1Te-w-2,+2,2pe-w-2.-l-2,i Po—w-242,j + 0
w=1

0 for j - 1> L.

‘Thus,

cov(Eq 1 1k2,i° Ce-L-242,5

L+k-2

- ;51 Pesu-142 "e—v=lhw,k "emw-4+2, PPe-w-042,1 Pe~w-042,3 (6.43)

It is important to note here that the covariance of terms which come

from different vintage groups are zero. For i = j (6.43) becomes:

COV(Ey 1 142,17 Ce-1-042,1)

L+k—&l
B Wizlne—w—ﬂt'*'z ﬂe—w-£+2 s k Tre—w—,Q,+2 N 2 pe—W_Q'-*-z . i qe—W-2,+2 , i (6 . 44)

It is worth noting here that

47 for k # %

Mew-242,k 7 Temu-042,8

and

L
z ﬂe-w—i+2,i =1 for all i.
w=1

Now, for k=1, £ =2, i=1and j = 2, formula (6.43) provides:

-1

cov(ee_L+1’1, €e-L,2) =z
w=1

-1
oy 1Te—w,l Tre—w,2 pe—w,l pe—w,2

(6.45)
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and for k=1, £ =2, i=3j =1, (6.44) gives

L-1

_ -1
cov(ee_L+l’1, Ee-L,l) wfl Ty 7Te-w,l ﬂe—w,Z pe-w,l qe-w,l
(6.46)
Upon substitution of Xe-v,l’ Ae-w,Z’ (6.45) and (6.46) into (6.42),
cov(r,, r,) = (1 - Z ™ P )-2
1 "2 . e~w,l “e-w,1l
[A- L7 . p N=Znlow W p _p )
w ew,l “e-w,l w &V e-w,1 e-w,2 “e-w,l “e-w,2
Loy )]

Tom z
+( w e-w,2 pe-w,2)(w Ramw e-w,1 Tre-w‘,2 pe-w,l qe-w,l
(6.47)
After the multiplication of the terms in the numerator, (6.47) can be

written as:

_ -2
cov(ry, ry) = (1 5 Met,1 Pew,1’

1

x [- 5 ne-w ﬂe—w,l 1Te-w,2 pe—w,l pe-—w,2
+2Inl @ T T P P P
e~-w e-u,l e-w,l1 e-w,2 “e-u,l “e-u,l e-w,2

uw

-1
+ ‘Zl 5 ne—w Tre-Wsl TTe-W,Z Tre—u’z pe—w,l qe—w,l Pe_u’z] . (6.48)

If it is assumed that all vintage groups die according to the same mor-

tality characteristic, i.e.,
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pe-w,k = Py for all w and k
then cov(rl, r2) is further simplified:

cov(rl, r2) =(1- pl)-2

-1
X [=
[ 5 Bew Tre-w,l TTe-w,Z Py Py
+3Iat @ U ™ P, P
e-w e-u,l e-w,l e-w,2 1 2
uw
+ ~1
5 3 L. ﬂe-w,l TTe-w,2 Tre-u,w pl(1 - pl) p2]

Hence,
cov(rl, r2) =

-1

-2 -1
e-w ﬁe—w,l

=@1- pl) [- 5 Doy TTe—w,l Tre—w,2 Py Py *iln

uw

X Momw,2 Te-u,2 P1 P2l

But,

I
u=1

I
[

e-u,2



110

Therefore,

-2
cov(rl, rz) =P, Pz(l - pl)

-1 -1
e=w "e-w,1 "e-w,2 L0 Te-w,1 ﬂe—w,Z) =0

X (T n
w

3. Derivation of large-sample covariance of L and r,

Asymptotic covariance of retirement ratios for the age intervals
k and %, where k < £ can be derived as follows.

For k = k and k = & equation (6.40) respectively gives

Lo telie2k - Cecl-lk
kOG-, (07 DA, o)
Ae-L-k42,k (i €Lkt 2,1
+
2
a- i le—L—k+2,i)
and
. e N S = )
G § Aemi-t42,3) (L - ? Aem1-042,3
AgaL-242,0 (§ €or1042,5
+
2
(- ? Ae-1-142,7

From the definition of covariance:
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— -2 ‘ -2
cov(zy , rg) = (1 - ? Ae-L-k+2,i) 1- ;Z ke_L.z+2,j)

KI = T A g2, (- f Aori- 42,5 ©OV(Eep 142 k? Ce-r-p42,0)

+ )‘e-L-z+2,z(l - i Aem1k+2,1) (covle, ; 142,k €omLmp42,k)

+ I .
19k CoV(Ey 1 142k Ce-1-242,5)

ZA )

J

C# A

e-r-k#2,kt  Z e g4o ) i V(€ 1 142,1’ Ceml-242,2

F AomLkt2,k Ae-1-2+2,8 (i CoV(E, 1 k42,1° Se-T-g42,1)

+ 5 ¥§ cov(E, 1 142,17 Ce-1-g42,5)) ) (6.49)

fori=1, 2, ..., k-1

§=1, 2, ee, &1

All the covariance-terms in the square bracket of (6.49) are com-

puted by formulas (6.43) and (6.44):

cov(e, 1 142, k° Ce-L-242,2

1

=-1 ne-w—2+2 TTe-w—2,+2,k Tre-w-2,+-2,2, pe—w—£,+2,k pe—w-l+2,2

(6.50)
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z

°°V(€e—L-k+2,k’-j )

Ce-1-2+2,

)+

cov(€ 1 x42,k’ Ce-l-k+2,k

+ € LI e .
cov(€, 1 142,k i#k e-1-242,3

- -1 :
= 5 D amumkt2 Temw=L42,k emw-242,0 Pe-wm042,k Je-w-142,k

ZZn-l m T P P
j#k e-w-{4+2 e-w-42,k e-w-2+2,% “e-w-2+42,k Te-w-1+2,]j

cov(€o 1 242,20 i Ce-1-k+2,1)

)

i COV(E _y242,8° Cemyki2,i

-1
- ? z P e-w-2+2 TTe--w—2+2,k TTe-w--!l.-i-Z,,Q. pe-w-£+2,i Pow-2+2,4
iw

)

cov(i Ee—L—k+2,i’§.ne~L—2+2,j

=7
s cov(€ 1 142,1° ee-L—2+2,i)

)

FZ2oeove, i 10 Ceo1it42, ]

i#j

(6.51)

(6.52)
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~ -1 .
B i 5 Pomw=242 Te-w=i2,k “é-w—2+2,2 Pow-042,1 Ye-w-g#2,1

-1
- i f f, Domw-t+2 emw=042,k "e~w-2+2,% Pe-w-2+2,1 Pe-w-24+2,5 * (6.53)
i#j

Upon the substitution of terms (6.50), (6.51), (6.52), (6.53) and

A's into equation (6.49), covariance between retirement ratios can be

written as
cov(rk, rz) =

. -2 _2
(1 - Z Z Tre_u_k+2 , k pe_u_k+2 ’ i) e-v-.Qr!'Z ] 2, pe-V-,Q,-l'Z ’j )

@G-z
iu jv

)

™

* - f i Meu-ki2,k Pe-u-i#2,1’ 1 ~ § E Temy-42,8 Pemv142,

-1
* (= 5 Domw—142 TTe-w-2+2,k Tre—w—£+2,2, pe-w-2+2,k. pe-w—2+2,2)

IT )

f (3 né—v—2+2,2 Pe-v-2+2,£)(1 - i a e-u-k+2,k pe-w—k+2,i

-1
X En 042 Temum42,k Te—u-42,8 Pe—w-042,k Jemu-g42,k
. .

-1
—jaz‘kgne‘w"”"z Memwmt42,k Te-w-242,2 Pe-w=g+2,k Pe-w-:+2,3

TIm )

*C Mo pk,k Pemutor2, 1)1 5y evt2,0 Pemvpt2, ]
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-1 .
x (= i EPemtt2 Te-umt2,k Temimh2,8 Pemu-t42,1 Pemu-g2,0)

+ (i MTemunkt2,k Pe—u-i2,k’ (5 Memym24+2, 1, Pemv-i42,2)

-1
X (jZ. 5 R omw-gtw Temu-2+2,k ﬂE-w—,Q,+2,2, Pomym42,1 Jemym42,1

L0t m m P P )]
v e~w-{+2 "e-w-+2,k e-w-{+2,2 “e-w~i+2,i “e-w-4+2,]

He M

2 (6.54)

e
. ™M

The multiplication of the terms in the numerators of (6.54) yields:
cov(rk, rz) =

-2 -2
Q=TT g2,k Pemuic2, i) (L ” 2 Memvatha, g Pemv-ph2, s

-1
b 5 Pemw-2+2 Te-w-2+2,k "e~w-2+2,2 Pe—u-242,k Pemw-g+2,8

-1
I 0, 019 Tecu-kt2,kTemw-042,k Te—w-g+2,% Pe-u-ki2,i
iuw ’

¥ Pomym2,k Pe—w-242,2

-1
+ ?5{; Bomir-242 Te-v—g42,8 e~w-042,k Te-w-042,2 Pe-v-2+2,]

X Pomw-g+2,k Pe-w-2+2,%
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-1 , .
?.?ifrfr R ow—042 Tre--u-k+2,k. ﬂe-_v-2+2 ,2“e-w—2,+2,k ﬁe-w-2,+2,2

¥ Pamu-kt2,1 Pe~v-1+2,j Pe-w-k+2,k Pe-w-2+2,2

-1
+ 35 B2 Te—v=42,0 Te~w-242,k Te~w—24+2,% Pe~v-242,2 Pe~w-2+2,k

* Qo—w-242 ok

-1
IR n, o 042 Temu-tcb2,k Te—v-242,0 Te-w-242,k Te-w-042,2
iluvw :

¥ Pomy—t42,8 Pe-u-k+2,1 Pe~w-042,k Te-w-2+2,k

-1
jik‘\zr ‘ZT Re—w-242 "e-y-L+2 A Tre—w—!l,+2,k Tre-w-2,+2,2, Po—w-242,k

X Pe—v-2+2,4 pe-w-2,+2, j

-1
+ZZ LI Mamw=2+2 Tre-u—k+2,k Fe’-v—2+2 ,Zﬂe-w—2+2,k TTe-w—52,+2,2,
ijuvw .
j#k

X Pe—y-242,8 pe-u—k-l-w,i pe-w—2.+2,k pe-w---!Z,+2, j

-1
- f.ivz\r Bay—2+2 We-u—k+2,k Tre-w-2+2,k ﬂe-w—l—l-Z,.Q Po—u-kt2,k

X Poym02 o2 Poy-042 i



116

-1 .
I T 049 Temumkt2,k Temvait2 0 Temw-042,k Te-w-142,10
ijuvw

¥ Pamu-k42,k Pe-w-14+2,0 Pe-w-242,1 Pe-v-242,;

-1 -
+IRIL 0, o 042 Memuict2,k Temv-42,8 Me-w-t2,k Te-w-142,0
iuvw

¥ Pomy-k#2,k Pe—v-242,8 Pe-w-2+2,1 Je-w-42,1

-1
- Z Z L .Z z ne—w—,Q,+2 we-u-k+2,k Tre-v—,12,+2,52, Tre-w-2,+2,k We-w—2.+2,2,
ifjuvw .

X Pe-—u—k-i-Z,k pe—v--,Q,+2,,Q, 1)e-w-,Q,+2,:i. Pomw-g42 ,j] . (6.55)

fori=1, 2, ..., k-1
j=1, 2, ..., 8-1

w=1, 2, «v., Ltk-2; u, v=1, 2, ..., L
After further simplification (6.55) may be presented as
cov(rk, rz)‘ =

-2 ' -2
(=2 ZT 2,k Pemutks2, i) L= 22T o 04 0 Pacy-t2,j)
iu iv

-1

x [LZ Romyy—+2 Tre—v—2+2,,?,ne—w-2+2,k Tre-w-2.+2,2, Pe—w-242,k

vVw

><(1:'e-v-.‘2,+2,32. - pe-w—2,+2,2,)
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-1
+ ?iﬁ ne-w~2;+2ﬂé-u-k+2,k ﬂe-w—£+2,k "é—w—%+2,2 pe-w-Q&Z,z

¥ (Pomymgt2,k Pemu-ki2,i ~ Pemu-k+2,k Pe~y=g+2,1’

-1
+ §§§ Dom=t42 Temu-242,8 Te-w-+2,k "e-w-242,8

* Pomw-142,k Pecw-242, 8 Pe-u-g42,§ ~ Pe-u-0#2,% Pe-w-1+2,3’

-1
N P2 Temurlet2 b Temv-t42,8 Temweit2,k Temui2, 1

% pe—v-2+2,£(pe-u-k+2,k pe—w—2;+2,i - pe-u—k+2,i pe-w-,?,+2,k)

-1
+ iiﬁiﬁ Romy-g42 Te-u~142,0 "e-v-kt2,k Te-w-0+2,k "e-w-2+2,%

X Pocy-g42,8 Pe—w-142,5 Pe-v-ki2,i Pemw=g42,k ~ Pemv-kt2,k

X Poow-142 R i)

-1
+ EJEEEEJ B w2 Teu-kt2,k Te-v-142,8 Temw=242,k Temwu-g42,4

X Poeymgt2, i Pemu-it2,k Pe—y—g42,i ~ Pe-u-ki2,i Pe—y-k+2,k) 1
(6.56)
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Of special interest here is the case in which all vintage groups

" die according to the same mortality characteristic,

pe—w-k+2,j = pe—u—k+2,j = p:i for all u, v, and j.

It can be directly observed that cov(rk, rg) = 0.

4. Derivation of large-sample variance of I

The variance of r, can be estimated by the following formula.

y=4

var(r) = (1 - g AemL-k#2,i

)

var(e

)2
e-L-k+2,1i

x [(1-Z A e-L-k+2,k
i s

ZA

+ 2>\e-L—1<.+2,k a- : e-L-k+2,{)

X (i cov(Eq 1 12, k* Ce-1-k+2,i))

2
A e-L—k+2,k(§ var(€, _; 42,1

+ I T cov(e (6.57)

s € o N1
143 e-L-k+2,1’ “e-L-k+2,j

Covariance and variance terms of (6.57) can be estimated by using for-
mulas (6.43) and (6.44):
e ) = var(Z P ' )
var( e-L-k+2,k’ ~ Var(w Te-kt2,k Pe—w-ks2 k ~ Pe-w-k+2,k

-1 2
20 gkt2 Temwokt2,k Pemwnkt2,k Jemw-ki2,k (6.58)
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cov(Eq 142 k* Ce-L-ki2,i) =

-1 2
o fz Pemw-kt2 Te-w-k+2,k Pe-w-k+2,k Pe-w-ki2,1 (6.59)

vartey 12,1

1

_ -1 2
- é Rewi-k+2 ﬂe—th+2,k Pe--w-k+2,i qe—w-k+2,i (6.60)

°°V(€e-L-k+2,i’ Ee—L-k+2,J') )

-1 2 .
== ln 2 Temwmkt2,k Pe-w—kt2,i Pe—y-ki2,] (6.61)

The substitution of A's, (6.58), (6.59), and (6.60) and (6.61) into

" (6.57) gives the variance of r, as

_ } : -4
var(rk) = (1 i i 7re-u—k+2,k pe-u-k+2,i)
2
x [(1 - i i We_u_k+2,k Pe-urk+2,i)
-1 2
)

X (fv Romymkt2 "emy-k+2,k Pe-w-k+2,k Je-w-k+2,k

+ 2(3 Te—u-k+2,k Pe-u-k+2,k) (1~ § 5 Me—y-kt2,k Pe—y-kt2,1i)
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2

X(=ZZn )
e-w-k+2 e—w-k+2 k e-w-k+2 k e-w-k+2 i

iw

+ (z Me—u-kt2,k Pe—u-kt2,k Pe-u-kt2, k)2

x (£ Zn_ 2
i w e~w-k+2 e-w-k+2 k e-w—k+2 i e-w-k+2 i
-gzznt - )
th v el Memw-k+2, k Powipki2,1 Pe~w-k+2,5? ] (6.62)

The multiplication of the terms in the numerator of (6.62) results in:

. o -4
var(r) = (1 52 Moy, k Pemu-kt2, i)

-1 2
[f] Momiik+? Me-w-ki2,k Pe-w-ki2,k Je-w-k+2,k

X

ZZZZ ne k2 Temu-ki2,k Te-w-k#2,k Pe-u-k+2,1

Po—y-k+2 ,K Qo —y—k+2 ok

2

+ gﬁzz ne ~-k+2 Te—u-k+2 k Te-v-ki2,k Te-u-k+2, k

X Poey-k+2,i Pe~v-k+2,j Pe-w-kt2,k le-w-k+2,k

2

-1
2??157 De—w-k+2 e—u—k+2 k e-w-k+2 k Pe-u-k+2,k
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X Pomymk+2,k Pe-w-k+2,i

-1 2

*2IIIAE Dotk Memurleb, k Memvob2,k Temu-kt2,k
juvw

¥ Pemu-k+2,k Pe-v-kt2,j Pe-w-kt+2,i Pe-w-k+2,k

-1 2
D Doty Temutor2, k Memvokeb2,k Tey-ki2 K

X Pomyk42,k Pe~w-kt2,i Je-w-ki2,i

-1 2
- i #Eiﬁg Re-w-k+2 Teru-k+2,k "e-v-ki2,k Te-w-k+2,k

X pe—u—k+2,k pe--v—k+2,k pe-w—k+2,i Pe-w-k+2,j] (6.63)

After further simplification (6.63) can be rewritten as

-4

var(r) = (1 - i ﬁ Memu-kt2,k Pe-u-k+2,1)

X [% ot m P q
o e=w-k+2 e-w-k+2,k “e~w-k+2,k ‘e-w~k+2,k

-1 2
- zii‘i Momymkt2 "emu-kt2,k "e-w-ki2,k Pe-u-kt+2,i Pe~w-k+2,k

-1 2

+ 2L 0T 0 Temu-ki2,k Te—v-ki2,k Te—w-k+2,k

iavw
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*Peocy-kt2,k Pev-kt2,k Pe-w-k+2,1

-1 2
+ 22IZ Be~w-k+2 “e-u—k+2,k "e-w-k+2,k Pe~w-k+2,k
fuw

X(Poyict2,k Pemu-kt#2,i ~ Pe~u-ict2,k Pe—w-ki2,i)

-1 2
+ ?ZZZ N omy~k+2 ne-u—k+2,k Tre-v-k+2,k “e—w-k+2,k
juvw

X
Pe-u-k+2,:1. Pe--v—k+2, j pe-w—k.+2,k -

-1 2
+IIREL 0 T i Mo ukeb2 k Tevoich2,k Me-w-kit2,k
ijuvw

% (pe-w-k+2,k pe-v—k-!-2, j (pe-u-k+2,k Pooy-k+2 ,1
"Payki2,k Pe—u-k+2,1’ ¥ Pe-yu-ict2,k Pe—w-ki2,i

X (pe-w-k+2,k pe-v-k+2,j - 1:’e-v-k+2,k pe-w—k+2,j N1 (6.64)

Of special interest here is the case in which all vintage groups are

subject to the same mortality characteristiec, i.e.,

Pecwmkt2,j  Pe-u-k+2,j - Pj’

for all possible values of u, w, and j.
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The variance of rk is then reduced to:

. - -4
var(rk) =(1-22Z Tre-u-k+2,k pi)

iw
-1 2 -1
[Py % I Pyt Memucier2,k ~ 2255 i ieo
w iuw
K ‘ﬂ'z
e-u-k+2,k "e-w-k+2,k Pk Pi
+ I35 ot T m 7r2 P
e-w-k+2 "e-u-k+2,k e-v-k+2,k 'e-w-k+2,k Pk Pi
iuvw
+ 25358 ot T . 4 > P, p.1
.. e-w-k+2 e-u-k+2,k e~v-k+2,k e-w-k+2,k k Yi Tj
ijuvw
But
L L
L M utt2,k = 2 Temyekt2,k = 1
u=1 v=1
Hence,
_ -4 o -1 2
var(r) = (1 i p;) (é B y-kt2 Te-w-ki2,k
x(p,q -2p Ip, +p 23 p, + p, (Zp )2) (6.65)
k % ko P17 P 2 Pg T Pt Py
1 1 1.
The variance of r, may be written as
) 2
_ (R, = )
1 2 ) ;R_k__i_ (6.66)

var(r) = (5 Pemumic? Temukt2,l) T - T p))

1
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where

Rk is defined as in (5.26)

Suppose that all vintage groups have the same size, say N k2

n for possible value w, then (6.66) is given by

2
(R, - R)
. var(rk) = Rk R:_l (6.67)
nLl- I pi)

i=1
D. L-year Experience Band Based on Item Value

So far, the models were derived based upon item counts. Since most
of industrial property accounts are kept in terms of units of dollars
rather than item counts hence, it is appropriate to consider the model
in terms of dollars (item values). '

This section concentrates on modeling based on item value. It can
be shown that essentially the basic formulas for the retirement ratios
and the corresponding variance and covariance remain the same as for the
model based on item counts. The variance and covariance are slightly

changed and the meanings of 7's and p's-are not changed.

1. Derivation of observed retirement ratios

From (6.35), the retirement ratios for the kth age interval can be

expressed as

i Be-w-k+2 ne—w—k+2,k
r=
k -3

I a n
w e-w-k+2 ~e-w-k+2 i w 2e-w-k+2 e-w-k+2,i

(6.68)
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If both numerator and denumerator of (6.68) are divided by

L
N k2’ then:
w=1

n n

z 3, kb2 (Ze;w-k+2 ). e~-2-k+2,k
w e-w-k+2 B myg=k+2

i n . n n
z 2, k2 e-w-k+2 -3T a e-w-k+2  _e-w-k+2,i
(5 Do gki2) iw SV K¥2 (5 Boykt2)  Pe—y-ki2

From the definitions of 7's and p's, r, may be written as

5 qemw-k+2 Té~w-k+2,k Pe~u-k+2 k-
rk = A
5 damy-k+2 e-w-k+2,k iﬁ Bemw-k+2 "e-w-k+2,k Pe-w-k+2,i
(6.69)
In terms of A's and €'s, (6.69) can be expressed as
AerL-kt2,k ¥ Cemlokt?,k
A W) - (6.70)
* T 7 Me-L-k#2,i T 7 Se-l-ki2,i

where

A = 5 2 ow-k+2 Te-w-k+2,k

Calokt2,i = = Zorg-kt2 Te-w-kt2,kPemy—kt2,1 ~ Pe-w-kt2,i’

Ae-L-k+2,1' 5 domw—kt2 "e-w-k+2,k Pe-w-k+2,i

Equation (6.70) can be approximated by linear order terms of the
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Taylor series:

)
¢ + e-L-k+2,k e

e-L-k+2,k le—L—k+2,k e-L-k+2,k

k=

Oo-1-ki2,k . P

5 €% 1
e = Moty | lki2k

<+

where

Ae-L-k+2,k

¢e-L-k+2,k'= (A*k - Aoe-L—k+2,k)

k-1
Nemlok#2,k = .2, Aacpk42,i
i=1
and
k-1
g® = I € .
e~L~k+2,k i=1 e-L-k+2,1 |

2. Derivation of large-sample covariance of I and T,

As in the case of formula (6.49), the covariance of retirement

ratios that are based on item values can be calculated by the following
formula.

2 (g -

covizy, Tg) = Oy = i AemLrict2,1)

x [y - i Agopk=2,1) g = JZ Ae-L-k+2,]

X cov(Ee_L_k+2,k’ €e-L-JZ,+2,R.)
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+ }‘e—L—R,+2,JZ;(A*k - f "e-L-k+2,1)(°°"(€e-L-k+2,k’ Conlm g2,k

+ jik COV(EQ—L-k‘l'Z,k’ ee—L-,Q,+2,j))
+ (Ae—L-k+2,k)(l*2 - :"23 Aaoi- !L+2,j) f cov(e,_;_ 042,48 Ee-L-—k+2,i)
+ )\e-L-k+2,k Aé-L-£+2, z(f cov(ee_L_k_'_z’i, Ee-L-2.+2,i)

¥ L;: cov(€ 1 k42,1 ee-L—2+2,j))_] (6.72)

fori=1, 2, ..., k-1; j=1, 2, ..., % -1.

Again, if it is assumed that each vintage group included in the
study dies according to multinomial distribution with parameter n___ , .,

and p for i=1,2, ..., N then covariances and variances of ¢'s

e-w-k+2,1i’

in (6.72) can be estimated by formulas (6.43) and (6.44):

cov(€, 1 k+2,k’ Fe-1-042,2)

-1 2

- 5 ne—w—,Q,+2 ae-w—,Q,+2 ne-w-?ﬂ'?— sk "e_2—2+2,2, '

¥ Posgy-g42,k Pe-w-0+42,% (6.73)
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) =

V(e 1142,k Ce-L-242,k

-1 2

=1z n4.=.—w—2,+2 ae-w-.Q,+2 1Te-w-,Q,+2,k ne-w—2,+2,2

w

X Pouy=242,k Je~w=042,k (6.74)

) =

jik Cov(E, 1 142,k Ce-L-142,]
1 2

== L In 042 Pey-td2 Te-w-242,k Temw-i42,0 Pemym42,k

ke w

% Pe—w-,?,+2,j (6.75)

L cov(e £ ) =

5 e-L-k+2,1i

e-L-242,%°

-1 2

=2l fe-umt42 emw-242,k Te-w-242,% Pemw-142,2

iw
X Pooy-042,1 " (6.76)

L cov(e

: e-L-ki2,i’ Ce-1-842,i) =

_ -1 2
=+ ;Z_ 5 Romw-24+2 Ze~u-t+2 ﬂe-w—2,+2,k Tre-w-2,+2,2, pe—w-,Q,+2,:i.

X Qog-pi2,1 (6.77)
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IZT cov(e . _ 2 € 2 nio s)
145 e=L-k+2,1’ Te-L-2+2,j’.
=-3LZ n'-l a2 nen T T p
it w e-w—-+2 “e~w=+2 e-w=-%+2,k e-w-{+2,8 “e-w-R+2,1
" Pemymi42,3 ' (6.78)

With substitution of A's, (6.73), (6.74), (6.75), (6.76), (6.77) and

(6.78) into (6.72) yields

cov(_rk, r 2,) =

= (% a ™ -5 a T P )~2
s e=w=k+2 e-s~k+2,k iu e-u~k+2 “e-u-k+2,k “e-u-k+2,1
x (Z a m -ILa ™ P y~2
t e~t-2+2 e-t-%+2,2 jv e-v-2+2 e-v-+2,8 “e-v-2+2,3
X -
[(5 qe-s-k+2 "e-s-k+2,k ii 8mukt2 Te-u-kt2,k Pe-u-ki2,1’
X - .
(z Be—t-2+2 Tl.e-t:—5?,+2,5?, ZZ Ba—y-2+2 Tre-v-2+2,£ Pe—v—ﬂ,-i-Z, j)
t jv
X (-2 ot a2 T T ) )
w e-w-242 “e—w-+2 e-w-42,k e-w-2+2,% Fe-w-L+2,kFe-w-2+2,2)

+ (5 8ot-042 Te-t-242,% Pe-t-242,0)

IZ a )

x (Z a
s iu

e-s—k+2 "e-s~k+2,k e-u-k+2 "e-u-kt+2,k Pe-u-k+2,i
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-1 2 .
x G E; D= t2 Ze—w=i42 Mamw-242 .k “e-w—.?.+2,jb Pomy-042,k

X Qomy-242,k

-1 2 .
- j;;k VEV 42 Pe-uett2 Te-umgt2,k Temw-i42,0 Pemw-042,k

X Pay-p42 s )

+ (2 8o s-kt2 Te-s-k+2,k pe-s—k+2,k)

X (E 8omt= 142 We—t—9,+2,2, - §3 8 amy-0t2 we-v~2+2,9, 1)e--v-SZ,+2,j)

! | )

*x (- ig 42 Temumfi2,k Temw=042,% Pe-w-i+2,% Pe-w-42,1

+ (5 3 _g-k+2 Te-s—k+2,k pe-s-k+2,k)(§ B =42 Te-t=242,2

X Pop-g42,0)

-1 2
X (25-‘:3; D emw-042 8 omy=142 TTe-w--,*2,+2,k 1Te--w—-,?,+2,52, Pe.-W1-,Q,+2,i

¥ Qpoy~2+2 ,i

-rzzat 2

i#jw e-w=

242 8 gy~ 242 we-w-SL+2 ,k Tre--w-!l, +2,% Pom-242 ,1 L ]

)]

(6.79)
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When the terms in the numerators are multiplied out, (6.79) can be

written as
cov(rk, rz) =

-2

D) )

b5 B ul#2 Te-u-kt+2,k Pe~u-k+2,i
iu

- (§ Ba—s=lt2 TIé-s—k+2,k -

-2
X (E Ba-t-1242 Tre—t-k.-l--2,,?, - ?3 Ge-v-2+2 ﬂe-v-£+2,£ pe-v-%+2,j)

-1 2

(= 122 Bomw-242 Zems-kt? Ze-t-g4+2 Zo-w-i42 we-s-kéz,k

stw

X Mampm42 0 Temw-142,k "e—w—042, 8 Pe—w-242,k Pe—w—042,4

2

-1 ,
+ igiﬁ Roym 2 Zemt-ft2 Zomu-kt? Ze-y-L42 Te-t-24+2,8 emu-k+2,k

1Te-w—2+2,k TTe-w-2,+2,£ pe-w--l-+2,k pe—w—2+2,2 pe-u--k+2,i

~1 2
+ ?235 Pomy-242 Zem-s-kt2 Ze-v-242 Ze-w-2+2 ﬂé-s-k+2,k

x Tre--v-2.+2,2. ﬂe-w-2+2,k TTe--w»r—l?;%—Z,!L pe—w-2,+2,k

Paw-242,4 pe—v—2+2,j

-1 2
- i?iii o042 Ze-u-kt2 Ze—v-2+2 Ze—w-242 Tre-u—-k+2,k ﬂe-v—2+2,2
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Temim842,k "e-ir=242, & Pe-u-k+2,1 Pe-v-0+2,] Pe-w-2+2,k Pe—w-24+2, 2

2

+ IIL n.l a a a 'n' w
stw e=-w-42 “e-s~k+2 “e-t-f+2 Te-w-L+2 “e-s-k+2,k ‘e-t-2+2,4

X Momi=242,k Temw-24+2,8 Pemt-242,2 Pe-2-242,k Je-w-242,k

55T oot a a a2 T T
{1t e~w=+tw e~t-0+2 “e-u~k+2 “e-w-+2 e-t-{+2,8 e-u-k+2,k

Tamw= 242 ,k Tamw= 2,8 Pe—t-2+2 »2 Po—u-kt2 ,1 Poy- 242 sk Te-wg 42 'k

Irzx n—l a a a2 T T
istw e—w—l—f—Z e=s~k+2 “e=t=+2 “e-w-L+2 "e-s-k+2,k e-t-+2,%

j#k

X M omm2, k. Temw~242,2 Pemt-042,8 Pe-w-242,k Pe-w-242,

2

-1
+ ffiiﬁ Docw-242 Zeot=042 Zemu-ki2 Ze-w-142 "e-t-242,9 e-u-k+2,k

Tre—w--!l,+2,k. "e—w-2,+2,2 pe—t-2+2,2 Pe--u—k-!-Z,i pe-w-ﬂ.—!—Z,k 1:'e--w—,?,+2, j

-1 2
iigﬁ Bomw=042 Zemg-kt2 Je-t-242 Ze-u-t42 "e-s-k+2 sk Tre-t—2,+2,£.

RN o,k We-w-£+2,2 Pe-s-k+2,k Pow-242,% Pe—w-242,1

-1 /)
+ igzzifr Mami=242 %e-s—k+2 Ze-v-2+2 Ze-w-2+2 Tre-s-k+2,k ﬂe—v—2,+2,f?,
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X Momgmt2 k. "em=42, % Pemg-kt2,k Pe-w-242,8 Pe-w-242,1

ﬂé-v—2+2,j

o =1 2
+ ?EE& Romy-242 Zemg-lkt2 Ze-t-242 Ze-w-2+2 1Te-s-k+2,k TTe-t-2+2,2-

X
Memti=42,k "e-w-242,2 Pe-s-kt2,k Pe-t-242,% Po—w-42,1

X Qowr-242,1
-TIT ol o a a a m n
. . e~w-1+2 “e-s~k+2 “e-t-f+2 “e-w-2+2 e-s-k+2,k e-t-2+2,%
ijstw .
i=j

X we-w-2+2,k‘“e-WH2+2,£ pe-s-k+2,k pe-t-2+2,£‘Pe—w-2+2,i

X pe-w--9,+2,j] (6.80)

After.considerable simplification, (6.80) may be presented as:

cov(rk, rz) =

I a )-2

e-s~k+2 Tre-s—k+2,k T
iu

= (g a e-u-k+2 "e-u-k+2,k Pe-u-k+2,i

x 2 Bamt-142 Tre-t-£+2,2, - ?5 a

. e-v-R4+2 Te—v-2+2,8 Pe~v-142,3) -2
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-1 2 . :
[255 Mew-i+2 Ze-s—k+2 Ze-t-2+2 Ze-w-2+2 ﬂe-s-k+2,k 1Te-t:-,Q.+2,R,

X

X M omwmgt2,k Te-w-242,% Pe-w-242,k Pe-t-242,0 ~ Pe~y-242,8)

2

-1
+
EEE‘E Pe-w-142 Ze-t-242 Ze-u-kt2 Ze-u-242 "e-t-142,1

Te—u-k+2,k "e-w-2+2,k "e-w-2+2,% Pe-w-2+2,k Pe-u-kt2,i

X (Po_yog42,8 ™ Pe-t-g42,0)

-1 2
+ ?255 ,ne—w—2,+2 ae—s-k+2 ae-v—,Q,+2 ae-w-,Q,+2 Tre-s-k+2,k ﬂe-v—£+2,£

Memw-042,k Te-w-142,2 Pecw-42,k Pecw-0+2,8 Pe-v-042,5 ~

- pe—v—£,+2,2 pe—w-—2,+2,j)

-1 : 2
FILNI B, 019 Becukt2 Zemy—42 Ze-w-242 Te-u-ki2,k
ijuvw

Temv-i42,8 "Te—w-042,k "e~w-2+2,9 Pe—u-0+2,k Pe-u-k+2,i

X (Pe—y-g42,0 Pe—w-242,5 ~ Pe-w-142,8 Pe—y-042,5°
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-1 . 2
+ i?ZZZ Romw-242 Ze—s-lkt2 Ze-v-p+2 Ze-w-2+2 “e-s-k+2,k
jsvw

¥ Mamy=42,8 Temw-42,k "e-w-2+2,8 Pemgs-k#2,k Pe-w-242,1

X (pe-w—ﬂ,-l-z ,2, pe-v_z-'.z ,j = Pe_v_£+2 ,2 Pe_w_z_*_z ,j) ] (6 . 81)

for i = 1, 2, .o-,k-l; j = l, 2, eeey 24"'1-

s, t, u, v, =1, 2, .0, Ly w=1, 2, .o., L+ k - 2.

Under the condition that all vintage groups have the same life

distribution,

pe-v—2+2,j = Pe-w-2+2,j = pj for all v, w, and j.

Then, it can be easily observed that cov(rk, rz) = 0.

3. Derivation of large-~sample variance of .

In a manner similar to that used for equation (6.57), the estimates
of variance of retirement ratios for each age interval can be computed

by the following formula.

_ - -4
var(m) = Qg i Ae-Lte2,1)

2
X [Oyyg - i Aecioir2,1) VAo ir2 i)
t
x 2Aé—L—k+2,k(A*k - 5 le-L—k+2,i) i coV(€ 1142, k° €oLict2,1
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2

+ Ae-lrk+2,

1 VAR Ep geyp ) ¥ T T eovE g 10 ook, )]
i i#j
(6.82)

According to Lemma 1 (Chiang, 1960a), the number of units retired from
each vintage group has the multinomial distribution with parameters

and p . Therefore, the variances and covariances of

Remw—k+2 e-w~k+2,i
g€'s in (6.82) can be derived from (6.44) and (6.43):

) =

var (e 1 k2,1

.-l 2 2
= 5 Pe—w-k+2 Ze-w-ikt2 "e-w-kt+2,k Pe~w-k+2,i Je-w-k+2,i

and
CoV(€e fkt2,1® Ceml-kt2,i) =

-1 2 2
T 5 Pe-w-kt+2 Ze-w-k+2 “e-w—k+2,k pe--w-k+2,i Pe-w-k+2,j

Upon the substitution of A's, the variances and covariances of €'s into
(6.82), variance of r, may be written as

-4
var(r,) = (i Be-s-It2 "e~s-k+2,k iz, 3 qy-kt2 Temv-ki2,k Pemvoict2, 1.

2

e~s~k+2 ﬂe-s—k+2,k‘- ?Z a )
iv

X [(2 a e-v-k+2 Tre—v-k+2,k pe-v—k+2,i
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x (T n-l a2 wz P q )
v e-w-k+2 “e-w-k+2 “e-w-k+2,k “e-w-k+2,k ‘e-w-k+2,k

X

2(§ Bomu-kt2 "e-u-k+2,k pe-u—k+2,k)(§ Be-s—k+2 "e-s-k+2,k

-Ir a )

iy e-v-k+2 Tomy-kt2,k Pe-v-k+2,i

x (- LI n.:l az 172 P P )
iw e-w-k+2 “e-w-k+2 “e-w-k+2,k “e-w-k+2,k “e-2-k+2,i

2
+ (E g y-k#2 Me-u-k+2,k Pe-u-k+2,k’

-1 2 2
@5 Me—w-k+2 Ze-w-k+2 "e-w-k+2,k Pe-w-k+2,i le-w-k+2,i

X

£%nt a’ n )]
§ oy emvrkr2 femukt? Te-u-li2,k Pomymkt2,i Pe-w-k+2,

e

#
(6.83)

for i, j=1,2, ..., k-1;

s, u, v, 2=1, 2, ..., L.
the terms in the numerator of (6.83) are multiplied out it yields

-4

IZ )

var(r,) = (2 Bomg-kt2 "e-~s-ki2,k Ty Cemv-kt2 Te—v-l+2,k Pe-v-k+2,i

x [ZIZ n-1 a | a a2 il T
stw e-w-2+2 “e-s~k+2 “e-t-k+2 e-w-k+2 e-s-k+2,k e-t-k+2,k

2
X
Te—w-k+2,k Pe-w-k+2,k Je-w-k+2,k
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1 2

2?.5.55 Te—w-42 Ze-s-ki2 Ze<v-kt2 Te-u-kt2 "e-s-ki2,k

2
X Momymki2, k "e-w-k+2,k Pe-u=l+2,k Te-w-k+2,k Pe~v-k+2,i

-1 2
+ i;zizi Ro—w-kt2 Ze-u-ki2 Ze-v-kt2 Ze-w-k+2 we—u—k+2,k TTe-v--k+2,k

2
Me—w-k+2,k Pe-u~k+2,1 Pe~v=ki2,j Pe-w-kt+2,k Te-w-k+2,k

-1 2
- Ziziﬁ Mo y-kt2 Ze-s-lt2 Pe-u-kt2 Ze-w-ki2 "e-s-ki2,k e-u-k+2,k
2

Te~w-k+2 ,k Pe-u-lc+2,k Pe~w-k+2,k Pe-w-k+2,1i

-1 2
+ 2?222 Mokt emu-ki2 Ze-y-kt2 Pe-w-ki2 "e~u-k+2,k e-v-k+2,k
juvw
,

" Temw-kt2,k Pe~u-ic+2,k Pe—w-k+2,k Pe—y-kt2,i Pe-v-ki2,j

-1 2
+ Eﬁflfz Bomw=lkt2 Ze-u-kt2 Ze-u-kt2 "e-u-ki2,k "e-v-k+2,k

2
X Meomymkt2,k Pemu~k+2,k Pe~v-ki2,k Pemw-kt+2,1 le~w-lk+2,1

-1 2
- i‘f isgne-w-mz Bemu-kt2 Ze-v-ki2 Fe-w-ki2 "e-u-k+2,k "e-v-k+2,k

2
Memi-kt2,k Pemu-kt2,k Pe~v-ki2,k Pe-w-ki2,i Pe—w-ki2,j]  (0-84)
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After considerable simplification, (6.84) may be presentfed as

i} } -4
Var(rk)'(g 8a-g-k+2 Tems-L+2,k iﬁae-v-k+2“é-v-k+z,kpe-v-k+z,i)
x [ZIZ ot a a g T oom

e-w=k+2 “e-s-k+2 “e-t-k+2 “e-w-k+2 "e-s-k+2,k e-t-k+2,k

stw

2
% ﬂe-w-k-l-Z,k I,e-w—k.+2,k cle-w-k+?.,k

+ IZIZ 0 a a 2’ m m
{uvw e-w~k+2 “e~u-k+2 “e-v-k+2 “e-w-k+2 e-u-k+2,k e-v-k+2,k.

2
ne-w-k+2,k I)e-u-k+2,k pe-v—k-!-Z,k. pe-w-k+2,i

-1 2

- ZIIL B 142 Zacgokt? emv-kt2 Ze~w-kt2 Mems—kt2,k

1sVW
™ TI'2
e-v-k+2,k "e-w-k+2,k Pe-w-k+2,k Pe-v-k+2,i

-1 2
* 2?255 Memw-kt2 Ze~s-kt2 Ze-v-ki2 Ze-w-k+2 "e-s-k+2,k "e-v-k+2,k

2 .
X Momu—kt2,k Pey~kt2,kPe-y-kt2,k Pe-v-ki2,i ~ Pe-u-ki2,k

X Poyyekt2,i)

-1 2
+ E?iﬁg Pemu-kt2 Ze-u-k+2 Ze-v-k+2 Ze-w-k+2 Tre-u—k+2,k Tre-v-k+2,k

2
Momimkt2, k Pe~ymkt2,k Pemu-k+2,i Pe-v-k+2, ]
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-1 2
+ E?iﬁg Bo—w-kt2 Ze-u-kt2 Ze-v-k+2 Ze-w-lt2 Tre—u,-lc+2,k "e-v-k+2,k

2
X Tre-w-k+z,1<{Pe-w-k+2,k Pey-ict2,§ Pe-u—kt2,k Pe—u-ki2,i

" Peou-kt2,i Pe—w-ki2,k) T Pecu-kt2,k Pe—y-ki2,i

X (Pogyeict2,k Pe—v-ki2,j - Pe—v-ici2,k Pe—w-k+2,i) ] (6.85)

When all vintage groups are subject to the same mortality characteristic,

i.e.,

pe-u—kﬁi,j = pe-v—k.-!-Z,j 'pj

for all possible values of u, v and j, then the estimate of the variance

of T is much simplified:

_ _ -4
var(r,) = (5 e sict2 Te-s—kt2,k(T ? ;)

-1 2

X [EEE ne-w-k+2 ae-s-k.+2 Bot-kt+2 ae-w-k+2

2
X Momgak#2,k Temt=k+2,k "e-w-k+2,k Pk Ik

2

-1 -
¥ 355 ne—w—k+2 ae—u—k+2 ae—v-k+2 Bemw=k+2

X ﬁ m “2 P 262 P )
e-u-k+2,k "e-v-k+2,k e-w-k+2,k "k 1 i
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-1 - 2

"2 gﬁi Me—w-k+2 Ze-s-k+2 Ze~v-k+2 Ze-w-kt2

2
Temw-ler2,k Te-v-k2,k Te-w-ker2,k Pk(Z Py)

-1 2
+ iié ne-w—k+2 ae-u—k+2 ae-v—k+2 ae-w—k+2

2

2
X Memu-k+2,k "e~v-k+2,k "e-w-k+2,k pk(>i: p)”] (6. 86)

Equation (6.86) may be written as

, _ _ -4
var(z) = (ﬁ 3g-s-ki2 Me-s-k+2,k{! E p;))

-1 2

X liff, Bwk+2 Ze-u-k+2 Ze-v-k+2 Ze-w-k+2

2
Tre—u—k+2,k 1Te-v—k+2,k Tre—w—k+2,k

2 2
or

-2
var(z,) = (i 3 gk#2 Me-s-ki2,k

' 2
x (% ot a? > ) . b (6.87)
v e-w-k+2 “e~w-k+2 e-w-k+2,k (1-12 pi)
i

fori=1, 2, ..., k-1

s, w, =1, 2, ..., L.
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Of special interest here is the case in which costs per unit from
all vintage groups and all vintage sizes are the same, say a and n, re-

spectively. Then, it can be shown that (6.87) is simplified to:

2
(R, - )
var(rk) = Rk EEI (6.88)
In(1- I p.)
=1
where

Rk - the true hazard rate

Py
k-1
(L- % p.)

i=1 *
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VII. THE DISCRETE MODEL UNDER GEOMETRIC

CONDITIONAL DISTRIBUTIONS

This chapter deals mainly with geometfic distributions. It basical-
ly consists of three sections. The first presents derivations of the
estimates of variances and covariances of hazard rates for long-lived
property when value or vintage groups are assumed to follow geometric
distributions. The second demonstrates the relative variance efficiency
of the ordinary least square (OLS) estimator to weighted least square
(WLS) estimator for the estimates of the true average hazard rates.

In the third section, an evaluation is made of the bias of the esti-

mators derived in part two.

A. Geometric Distribution
Random variable x is defined to have a geometric distribution if

the density function of x is given by

£(x) = P(1 - )X

=0 otherwise x =0, 1, 2

The geometric distribution has interesting features, namely,
1. it is parameterized by single parameter p,:
2. the hazard rate associated with it is constant, and

3. it can be used to represent long-lived property when
p is small.

The equivalent of the geometric distribution in the continuous case

is negative exponential distribution.
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In engineering valuation, the constant hazard rates can be inter-
preted as describing ghe situation in which the portion of the property
being retired in any year is independent of age.

Some industrial properties have long-lived distributions, hence,
their retirement experience can be modeled by geometric distribution with

small p, where p represents the true probability of units or dollars re-

tired during any age interval.

B. Variance-covariance Structures of Hazard

Rates for Long Expected Life

l. Property groups classified by value and life

For the first k periods, the retirement experience from the proper-

ty group of value a is assumed to follow a geometric distribution having

parameter pa , 1.e.,
[

i}
[
N

-
.
-
w‘

i .
a . pa (l - Pa ) 9 for 1
sS1 S S

o
]

For small P, >
s

il

p 1,2, ..., k. (7.1)

a Pa (1 -1 P, ), for i

si s [5

It is important to note here that only in the first k periods the
retirement experience is assumed to follow the geometric life distribu-
tions. The remaining life of a property group may follow some other kinds

of life distributions. The advent of technology, management policy, eco-

nomic conditions, etc. may affect the characteristics of the future life
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of the property group.
Upon the substitution of condition (7.1) into (5.33) and after fur-

ther simplification, the approximate covariance of r, may be written as

cov(rk, rz) =

= -2 ~2
= (2 a moo- g z a m P )y T (Z a To- g La T, P ) © %
s s ir r °r u u jv v “v
2
. (as Tras)
x 222 ———(a m ) m )p (p, -p ) +o5(p, )]
sru a_ r u s °r s s

where 03(pa ) represents the summations of P, terms of order of at least
. S S .
three. Considerable simplification may be obtained when the terms of

order three are negligible. It can be shown that

cov(rk, rz) =

(2 m )2
_3 S as
= (2 a T ) [ZZ (ar T ) X
S S ST as T
X P, (pa =P, )] (7.2)
S T S

2

Similarly, the variance of retirement ratios for each age interval

under geometric life distributions can be approximated by
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(a_'m )2
~ =2 S as 2
var(rk) = (I CH ) © 2 (pa - (k + l)Pa )
s s s a s s
S.’
2
+ 2(k = 1)(Z y 31z " ﬂas) ( o
- a m a m™)
s ° & sr nas roa pas par

2. Property groups classified by vintage and life

For each vintage group which is included in the study, it is as-
sumed for the first k periods, that its retirement experience follows a

e tri i i i i . .
geometric distribution having parameters N it and Poymit2? 1:8s

P =p (1-p )1
e-w-i+2,i e-w-i+2 e-w-i+2

forw=1,2, ..., L
i=1,2, ...,k
For small Pompmit2?

(7.4)

s s
pe-w—i+2,i pe-w—i+2(l * Pe-w-i+2)'

Under geometric conditional .distributions, approximate covariances of rk

and rz can be derived as follows.

The substitution of (7.4) for p's, and after further:simplification

(6.56) may be written as

-2
covlme T = (= (k=D 2 T e,k Pemurket?)

-2
x@A-0G-1 5 “e—v—£+2,2 pe-v—2+2) x
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-1

XL 042 Teumtt2,k Temw-242,0 Te-w-042,8

uw

* Poy-g42Pecyph2 ™ Pemy-pi2) + 03P (7.5)

But

-2
(1-(-1 i Temt=k+2,k Pemu-kt2) =

=1+2(k=-1)ZIm7 (7.6)
u

e-u-k+2 ok Poy-kt2 Foeee

for all k, u.

Upon the substitution of (7.6) into- (7.5), and when the terms of ordér

three are negligible covariance of . and r, may be presented as

-1

cov(z,, 7o) = i 5 Romiy-tt2 Tew=42,k Temw=042 0 Temun42,2

X pe—w—2+2(Pe-g-$+2 - pe_w_g+2) (7.7

foru=1,2, ... Lyw=1,2, .o., L+ k-2,

Under geometric conditional distributions, estimates variance of T
can be derived as follows. With the substitution of (7.4) for p's, and

after further simplification, (6.64) can be written as

i -4
v_ar(rk) =@@Q-(k-1) i Tre-u-k-l-z .k pe-u-k+2) X
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-1 2

% [3 B oi-kt2 TTe-—w—k+2,k Pacy=k+2 Je-w-k+2 ~

-1

2
-2k =D g Te-u~kt2,k "e-w-k+2,k Pe-w-k+2 Pe-u-k+2

uw

+ 03(P)] . (7.8)
But -

-4 _

@-&-1 i Memu=2,k Pe-u-lc+2)

(1+ 4(k = 1) lz1 Momunict2, k Pecucier2 + **" (7.9)

Upon the substitution of (7.9) into (7.8) and when the terms of order

three are negligible, variance of r, may be presented as

-1 2

var(r,) = 5 Demw=kt2 "e-w-k+2,k Pe—y-kt+2 Je-w-k+2 ~

e-w-k+2 we-u—k+2;k "e-w-k+2,k‘pe-u-k+2 Poy-k+2
(7.10)

- 2(k - 1) IX L 2
uw

The above derivations deal with data ﬁhich are measured on the basis of
item counts. Analogously, for the case of data that are kept in units

of dollars, under geometric conditional distributions, covariances and

variances are estimated:

-2 (c -2

cov(ry, r)) = (ﬁ 2 . dg-y-g+2 Te—y—-242,8)

e-u-kt+2 Te-u-kt2, K
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-1 2
x [gf] Row-242 qe-s—k+2 Ze-t-k+2 Ze~ud +2 Tems—lt+2,k "e-t-242,
Tre-w-2,+2,k ﬂe-w42+2,2 pe-WH2+2(Pe-t-2+2 - pe-w-2+2)]’ (7.11)

and

_ -4
var(r,) = (ﬁ 2omukt2 Temu-kt2,K

x [2ZZ -1 a a a2 w m X
stw e-w-k+2 “e-s-k+2 “e~t-k+2 “e-w-k+2 "e-s~k+2,k e-t-ki2,k

Te—w-k+2,k Pe—w-lkt2 e-w-ki+2 ~

1 2 X

-2k -1 553 Rew-kt2 Ze-s-k+2 Ze—v-k+2 Ze—w-k+2

2

X Moes—k42,k Te—v-k#2,k "e-w-k+2,k Pe-v-k+2 Pe-y-ks21" (7.12)

C. Variance Efficiency of the Average vs

Weighted Average Retirement Ratios

It was mentioned earlier that mortality characteristics for long-
lived property may be modeled by geometric distributions. 1In this case,
in view of the hazard rate properties of the geometric distribution,

a parameter of special interest is
k

6=1/k Z E(ri) (7.13)
i=1
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Suppose it is desired to estimate 6. Two kinds of estimators may be used

to estimate (7.13), namely,

k

0. =1/k I =, (7.14)
1 =1 i
and
A k
6, = I w, r (7.15)
2% 2 i

where the weights, LA are chosen to take the variance-covariance struc-

ture of the Ty into account.

This section presents the derivations of the relative variance ef-
ficiency of estimators (7.15) to (7.14).

Efficiency of the estimates of 8 here is simply defined as the quo-

tient of the variances of both estimators.

k
var(iz1 Wi.ri)
Efficiency = % ‘ (7.16)
va::(k_l z ri)
i=1
The weights Voo i=1,2, ..., k,
k
minimize var( £ w, r.)
i1
i=1
subject to (7.17)
k
X w, = 1
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To solve the system equations (7.17), first the following function is
formed:
f(wl, ceey wk) = var(l v, ri) + A(Z W, - 1)

where A denotes Lagrangian multiplier.

Then the corresponding derivatives with respect to A and Vs i=

1, 2, ..., k, are taken, and are set equal to zero to solve for W, .

The function f(wl, cavs wk) may be written as

i,j
i#3

- 2
f(wl, cees Wk) = i vy var(ri) +ZZ W, wj cov(ri, rj)

+A(2Z w, - 1)
i 1

Its partial derivatives with respect to W and A are then set equal to

zero:
of _ :
el 2 W, var(r.) + 2 ¥ w. cov(ri, r.) +A=0
Wy + j#i J J
for j#1i=1, 2, ..., k, (7.18)
of _ - 1= .
N T

The system equations (7.18) can be expressed in the matrix form:
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f \ ’ 7 3
\
2 v 2 Vi) .o 2 Yk 1 W, i 0
2 v12 2 v, 2 Yor 1 v, , 0
|
2 Vik 2 V2k 2 vk 1 Wi | 0
1 1 1 0 A b1
» / N / \ V4
(7.19)

where vi and v,, denote the variances and covariances of the ri, respec-

tively. Equation (7.19) may be written as
w1,

If the matrix V is nonsingular, then the weights w are given by

w=vl 1 ‘ (7.20)
For k = 2, the weights Wy and w, are found to be
oe—12" 72
1 2 Vi ~ vy v2
and (7.21)
v o= 1277
2 2 vl2 —V TV,

It can be shown that var(w:L X + vy r2) is estimated by
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12 1l 2
2 v12 - v1 -V,
and
r1 + r2
varG——Er——O by 1/4 v, + 1/4 v, + V19
Hence,

2 }
4(v - v, V,)

Efficiency = - =
(2 Vo~V VZ)(Vl + v, + VlZ)

The following three examples illustrate the computations using (7.22).
Consider a property group which is classified into two value categories.

For k=1, ¢ = 2, and M = 2, (7.2) gives

= -3
cov(rl, r2) = (a ™+ b ﬂb) X

2

a _) '
o p ey - ¢
a
(b Trb)2
+ T‘ (a Tfa) Pb(Pa - Pb)] (7.23)

Equation (7.3) for k = 1 and k = 2, respectively, gives,

_ -2 2 Py 2 Pp
var(rl) = (a T +b nb) ((a ﬂa) 5 + (b ﬂf) .

2 2

2 Py 2 Py
- 2(a ﬂa) n—‘ - 2(b 'ﬂ'b) —n—)
a b
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and (7.24)

- P P
var(r,) = (am +b ) 2 ((a fra)2 n—a + (b 'nb)z ;13 ) +

a b
- P, P P_P
+ (a m o+ b nb) 3 (2(a 'na)z (.b Trb) ?%b + 2(a m) (b ﬂb)z ab_
- ((a Tra)3 + 3(a ﬂa)z (b TTb).) -n;aa- - (3(a wa)(b wb)2+(b ﬁb)B)nL;)

Of special interest here is the case in which the terms of order two are

negligible. It follows from (7.23) and (7.24), respectively, that

cov(rl, r2) =0
- _ -2 2 P, 2 Py
v, = var(rl) = (a Tra + b ‘nb) ((a ‘rra) oy + (b Trb) . nb)
and (7.25)
= — -2 2 P, 2 i
v, = var(rz) = (a TTa + b TTb) ((a TTa) o + (b 'ﬂ'b) nb)

Upon the substitution of (7.25) into (7.22), the expression yields

bv v
Efficiency = —-1——25

(vl +v2)

-4 -1 2 -1 2 2
4(a ™t b Trb) (na (a ﬂa) p,+tm (b ﬂb) pb)
2

-2 =1 2 -1 2
(2(a m,tb TTb) (n, “(a Tfa) p, oy (® '"b) pb)
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Example 2.
Consider mortality data aggregated over several vintage groups which

are based on item units. For k = 1 and % = 2, equation (7.7) gives

cov(rl, r2) = iﬁ TTe-w,l Tre—w,2 TTe-u,2 pe—w(pe—u - Pe—w)' (7.26)
From equation (7.10), it follows that:
Var(r):Z-ﬂi-_w_-t]L’ip q
1 w Cemgyl ©WHL Te-wil
2 2
ﬂ .
_ e-w,2 _ e-u,2 e-w,2
var(rz) n Poy Ye-w 2 11 n e-w Pe-u’"
e-w uw e-w

Under the condition that the second order terms are negligible:

cov(rl, rz) =0
2
Me—wtl,1
var(r,) = L —2=p
1l v Pe-wtl e-w+l
and (7.27)
ﬂz_ 9
var(r,) = L W, P .
2 N, eV

Upon the substitution of (7.26) into (7.22), the expression yields

2 2
T__ 71'_ p_
4(T e-wtl,1 D )(E e-w,2 “e-w )
. Nl e-wtl w N
Efficiency = w2 e 5 5

.2 Pao
L5 8 w,2 ‘e w)

n n
w e~w+l w e-w

(Z Tre-w+1,1 pe—w+1
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Example 3.
Consider mortality data aggregaéed.over several vintage groups which

are based on units of dollars. For k = 1 and £ = 2, equation (7.11) gives

_ -2 -2
cov(ry, 1)) = (i Ze-utl Te-utl, 1) (5 @

a a
e-s+l “e-t+l 2
x [ZZIZ : e-w e-s+1,1 TTe-t,z TTe-w,l X
stw e-w .
* Memw, 2 Pe-u(Pet ™ Peyy) I

For'k = 1 and k = 2 equation (7.12) gives, respectively:

' a a
)-4 [5I5 e-s+]l e-t+l y

var(r.) = (L a
1 u stw ne-w+1

e-u+l Tre-u+l,1

2 2 ]

X Ge—wtl 1Te--s+-l,1 1re-t+l,1 Tre—w+1,l pe—w+1 Ge—w+1

and

- -4

var(rz) B (i e-u ﬁe-u,Z)
a a az

253 2e-s Ze-t Ze-y ) |
X [stW n 'ﬂ'e_s’z ‘ﬂ'e_t’z Tre_w’z pe_w qe_w -
e-w
2

e-s Ze-v %e-w 2

i 535 ne-w We_w’z Tre-v,2 Tre-w’z pe_w pe_v]

Of special interest here is the case in which the terms of order two

are negligible.
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Under this condition:

cov(rl, r2) =0

= (Z ~4 x
var(ry) (u gyl Temutl,1)

Ba-st1 Ze-t+1 a2 T T ﬂ,2 ]
e-w+l e-st+l,l1 e-t+l,1 "e-wtl,l pe-w-l-l

(7.28)

x [ZZT .
stw e-~wtl

and

i} -4
var(rz) = (,E 3y “e-u,z) X

a - ae—t az—W
x [gzr —==2

1.

T T P
stw e - e-s,2 e-t,2 e-w,2 “e-w

Upon the substitution of (7.28) into (7.22), the expression yiélds

- : -4 ' -4
Efficiency = 4(12'1. 3wl We-u+1,l) (i a,_, we-u,z) x
a a
e=s+l "e~-t+l 2 2 .
X
) (EEE ey el Memst1,1 Te-t+1,1 "e-wtl,1 Pe-wtl)
2
a a__a__ 9
X(ZZZ e-s e~t eW,n, T T p )x‘
stw _— e-s,2 e-t,2 e-w,2 “e-w
-4 Be-stl Ze-t+l 2
x [(Z a T _ ) T O(ZZL a T _ X
u e-uwtl e-ut+l,l atw ne-w+l e-wt+l "e-s+1,1
2

x +
Me—t+1,1 "e-wt1,1 Pe-inrl)
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2
=4 Ge-s Ze-t Ze-u 2 -2
+ a m
(i e-u e—u,2) (255- S S Tre--s,2 TTe-t,Zne-w,Zpe-w)]

D. Evaluating Bias

In section B of this chapter, the true average retirement rates over

k

certain age intervals, 0 ='% z E(ri), are estimated by OLS and WLS re-
i=1 ’

resulting in the estimators 6, =+ I r, and 6, = I w, r,, respective-
1 k =1 1 2 j=1 L1

ly. Estimator 61 will be an unbiased estimator for 6, while 32 will be

biased, with the bias given by

k
Bias = I (w, - 1/k) E(r.). (7.29)
. i i
i=1 : »
For k = 2, with v., = 0 to the first order in p, (7.29) may be expressed

12
as .
v, (E(r)) - E(r,)) + v (E(r,) - E(r)))

2(v1 + v2) (7.30)

Bias =

This section concentrates on evaluating (7.29) and (7.30).

1. Property groups classified by value and life

Before bias can be computed, it is necessary to evaluate E(rk). To
obtain a better understanding consider the property group which is classi-~
fied into two value-categories, say a and b.

Equation (5.5) gives

(Z€,)
. = M bk W S (7.31)
k- G-zAa) T O-IA) TR-T A

° i i i
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Taking the expectation of (7.31), one obtains

Me
E(rk) = m (7.32)
i

Since by definition E(Ei) = 0 for all i.

In terms of p's, (7.32) can be written as

am_ p_ +bm pbk

B(r) = a’a B : (7.33)

k (a'lra+b'lrb—a1r Zp —b‘rrprb)

i % 1 %

But

amT Ip +bmIp -1

(a7 +bm) L - 1% bibi) =

a b aT +bm N

a b
. aﬂaipai+bﬂb§pbi

(a‘n‘a+b’frb) 1+ aﬂa"'b“b + .al) (7.34)

Upon the substitution of (7.34) into (7.33), the expression yialds

oo
a'napak.b‘irbpb aTraZIpa.+b1T Zpb
E(r,) = k 1+ 1_1. 1,0
k amT™ +bm a'n +b
a b ) b
am p +b"bpbk
E(rk)= aT™ +br +
a b
(a") Pak +(b'") Py ZPb
+ i ki i,
(aTTa-l-bTrb)
(am)@® ™) +p Zp_ )
aki b ;3
+ + ... (7.35)

2
(a TTa +b TTb)
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In the case of a geometric distribution,

_ N
pik pi(l pi)

and vhen p's are small,

pik = pi(l -k pi) (7.36)

for i = a, b.

Upon the substitution of (7.36) into (7.35) and when the third order terms

are negligible, it can be shown that:
E(r,) = (a 7 +bn)-1(a1rp+b1r p) -(am +b1r)-2><
k a b a‘a b b a b
2 2 2 2 2 2
x (am )" p "+ (bm) p +k(am )b m)lp ~+p7) -
- 2(k - D(a 'ﬂa) (b TTb) P, pb). (7.37)
Under the conditions that the terms of order two are negligible:
E(r,) = (a7 +bw)-1(a1rp+b1r P.)
k a b a ‘a b b’ °

Also from (7.25) it follows that;:

cov(rl, r2) =0
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- P P
var(r)) = (am_+b 7)) 2 (a na)z 240 nb)z by
a .
(7.38)
-2 2 Py 2 Py
var(rz) = (a T + b 7rb) ((a Tl'a) = + (b ﬂb) -n; )
a

Upon the substitution of (7.38) into (7.21), the expression yields

' -2 2 Py 2 Py
(a 7ra + b ‘rrb) ((a 'na) ” + (b Trb) nb)
— a -
Y1 T P P %
=2 2 a 2 p 2
2(a T + b Trb) ((a 'na) - + (b Trb) ;;
a
and
-2 2 Py 2 Py
(a ﬂa + b ﬂb) ((a na) = + (b nb) nb) .
w, = pa 5 =5
-2 2 Fa ; 2%
2(a T +Db 'nb) ((a ‘na) =+ be) ;l-’)
a b
Hence,
2
Bias = I (w, - 1/2) E(r,) = 0.
i=1 +

Observe that when the contributions of the terms of order two are signifi-

cant, the bias is generally not zero.

2. Property groups classified by vintage and life

Bias is evaluated as follows for the case of property group classi-
fied into multivintages and life. When data are based on unit counts,

equation (6.40) gives
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Lo lelkrak L Fesleladk
ko= A e,y 2 ey y)

+

AemLici2, k(f € etkt2,1)

+ 7 .. (7.39
- Z:')\e-L-k-i-Z i)
i L)

The expectation of (7.39) yields

A
~L-k+2,k .
E(r,) = =— 2 (7.40)
Koa f Aa-L-k+2,1)

since by definition, E(g) = 0.

But

Tomw=k#2,k Peu-kt2,k

E(r,) = 75— (7.41)
Koo iff Me-w-k+2,k Pe-w-k+2,1’
_1 _
- E‘E Tre-w-k+2,k 1:'e—w—k-i-Z,i)
=1+ ié Mow-kt2,k Pemy-ki2,4 ¥ **° (7.42)

The substitution of equation (7.42) into equation (7.41) yields

E(ry) = f, Mo—w-k+2,k Pe—y-k+2,k T

+ iiﬁ Tre—u—k—!-Z,k 71.e-w-k-*-Z,k pc.=.—-u—k+2,k pe—w-k+2,i *ee. (7.43)



163

The retirement experience from the vintage groups included in the study

is assumed to follow geometric distributioné, i.e.,

(1L-4ip )

pe-w-i+2,i = Pew-it2 e~-w=i+2

for all i and w.

Under the above condition and when the terms of order three are negli-
gible, equation (7.43) is simplified to:

E(r) = 5 Me-w-k+2,k Pe~w-k+2 ~

2 +
e~w-k+2,k Pacw-k+2

-kZIT
w
F ol ) I Tk, k Temumlor2,k Peu-ler2 Pemy-k2”

(7.44)

Of special interest here is the case in which the terms of order two are

also negligible due to the small p's. Equation (7.44) then gives

E(rk) N 5 TTe-w—k+2,k Pow—k+2 * (7.45)

Upon the substitution of (7.27) and (7.45) into (7.30), the bias can be

estimated by
Tr2 p 2 -1

n
w e~w+l w e~w
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“z-w 2 pe-w
x [p ==t ¥ (5(q
w e-w

e-wt+l,l Pacwsl ne-w,z pe-w)) +

To—wt1,1 Pe—iotl

* 5 L) (g(we—w,Z L ne-w+1,1 pe-w+1))] (7.46)

N

The bias of estimator 62 is next computed for the case of data

measured based on dollars. Equation (6.70) gives

Eew-k+2,k

Qg = 5 Ae-w-k,+2,i

Xe—w—k+2,k

ko Qg m f Ae»w-k+2,i)

o +

)

(g ee-w-k+2,i)
e-w-k+2,k - 5
(G, -Z2A )

*e 7 Cemw-ki2,1

+ A

As before, under geometric conditional distribution, it can be

shown that:

_ -1
E(ry) = (é ekt Te-w-ki2, k)

X (i demw=k+2 1Te--w-k+2,k pe-w-k+2) +

)-2

+ (k-1 a IZ 2, y-it2 demw-ki2
w vw

e-w-k+2 TTe-w-k+2,k

X Tre-v—k+2,k TTeéw—k+2,k Pomv-k+2 Pe—y-k+2 * (7.47)

Furthermore, when the second order terms are ignored, E(rk) is given by
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-1
X
E(r) (5 2 -kt2 Me-u-k+2 K

X (5 ae-w—k+2 "e-w—k+2,k pe-w-k+2) (7.48)

for k=1, 2, ...

Under the condition that the second order terms are negligible, equation

(7.28) gives

cov(rl, rz) = Q.

_ -4
var(r,) = (5 el Temtl,1)
x [LII ol a a a’ ™ T ° P ]
stw e-wt+l “e-s+l "e-t+l “e-w+l e-s+l,l e-t+l,1 "e-w+l,l “e-wtl

and
var(r,) = (I a T )’4
2 o ewil Te-wtl,l
-1 2 2
x [253 Teewtl Ze-s+1 Ze-t+1 Ze-wnl TTe-s+1,1 TTe--t+l,1 "e-w+1,lpe.w+l]

(7.49)

Upon the substitution of (7.48) and (7.49) into (7.30), the bias of the

A

estimator 62 is given by

2
)-4 (I Be—s+1 %e-t+1 8owtl «

Bias =-%[(Z
stw . n

o Je-utl Te-utl,l

e-w+l
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2

X Tre-s+1,l Tre-t-l—l,l “e—wi-l,l 1:'e-wl-l +

2
=4 Ze-s Ze-t Ze-t -1
+ G ae-u “e-u,z) (ZIX e=5,2 Tre-t,z Tre-—w,2 pe-w)]
u stw e-w
a a a2
-4 e-s e~t “e-w 2

* [ Ge-u we—u,Z) (212 Tre—s,2 Tre-t:,Z Tre—w,2 pe-w) X

u . stw e~y
x ((T a T ylea T P ) -

u e=w+l e-wtl,l w e-wtl e-w+l,l “e-wtl

-(Ca T 2)'1 (z )) +

a m P
e=w e-w, e~w e-w,2 "e-w
w : w o

)4 (22T Ze—st1 Be-tl y

stw ne_m_l

+ (E Ze-utl "e-utl,l

2 2

X 8wt Tre-s+1,l Tre-t+l,1 Tre-w-i-l,l pe—w+l) X

X ((Za,_ T ) (a ) -
w w

T
e-w e-w, e-w e-w,2 pe-w

e

- . Ze—wtl Te-wtl,l Peuir1)) 1

o emwtl Te-wtl, 1 (7.50)

X
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SUMMARY AND CONCLUSIONS

The univariate distributions used in previous research do not take
into consideration the random variability of life (age). Value is not
independent of ages; hence, the univariate distributions can not fully
describe the relationship between value and life. The above facts lead
to the development of bivariate distributions of value and life.

In this study, the joint continuous and discrete distributions of
value and life were modeledf For the case of joint continuous distribu-
tion, bivariate lognormal and gamma distributions were applied to repre-
sent F(t), the proportion of dollars surviving up to age t. These
distributions are well-known, but their application to life analysis
appears to be new.

When the joint distribution is bivariate lognormal, F(t) can be
represented by

fn t - My = 012

F(t) =1 - o¢ ) .

9

Under the bivariate lognormal, the estimate of F(t) can be found by simply
- replacing unknown quantities by the sample quantities;

fn t - ﬁz - 812
212

F(t) =1 - o

%

So, when the mean, variance and covariance of the samples are known, the
proportion of dollars surviving up to any age can be computed. Under
the bivariate gamma distribution, F(t) is given by

a(1 ~-T (t)) +b(1 ~-T, (£)
F(t) = atc+l —— at+c
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For the case of joint discrete distribution, the asymptotic co-
variance and variance structures of the retirement ratios of the indus-
trial properties which are respectively subject to the following condi-
tions, were deterﬁined.

1. The retirement experience from value or vintage groups
have different mortality characteristics, i.e., multi-

nomial life distributions.

2. The retirement experience from value or vintage groups
have the same mortality law.

t

3. The retirement experience from value or vintage groups
are assumed to follow geometric distributions, for both
the situation 1., and the situation 2.
Under 1., it was found that the asymptotic covariances between the retire-
ment ratios for two different age intervals are generally not zero.

Under 2., it can be shown that the asymptotic covariances between
the retirement ratios for two nonoverlapping age intervals are zero.
Therefore, the retirement ratios are uncorrelated. Chiang (1960a)
established zero correlation of retirement ratios for small samples,
using a different method. Since a multinomial distribution tends to
normality for large sample sizes, then the retirement ratios are found
to be asymptotically independent.

When the size of all vintage groups are taken to be equal, the asymp-
totic variances of retirement ratios can be written explicitly as a func-
tion of the inverse of the width of the experience band used in the study
and the size of vintage. In general, it is true that the asymptotic
variances of retirement ratios are inversely related to the band width
and vintage size.

This relationship may explain the basic idea of choosing the width
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of experience band to be between 3 and 30 years, which is recommended by
Marston et al. (1979). The smaller variances serve to reduce errors in
estimating the survivor function developed on the basis of those re-
tirement ratios.

When item values are incorporated in the analysis, the magnitude of
the asymptotic variances of retirement ratios is reduced. Hence, the pri-
mary effect of using dollars as measures of the amount of property is to
reduce the magnitude of the asymptotic variances.

The condition that all value or vintage groups die according to the
same mortality law may not be a realistic assumption. Industrial prop-
erties and the nature of their retirements are very complex. Many factors
influence the rates of retirement in different ways and may have dis-
similar effects on the various property groups. However, if the condition
is assumed and the number of units from each value or vintage group is
sufficiently large, the retirement ratios are nearly independent. Fur-
ther, because of the characteristics of approximate independence of the
retirement ratios, it is sufficient for fitting a general linear model
to retirement ratios to use weighted least squares with only diagonal

terms., Various weighting procedures can be developed for the above

purposes.

Mortality characteristic for long-~lived property can be represented
by a geometric distribution having a small parameter p. Under this dis-
tributional assumption the asymptotic variances and covariances are

much simplified when the contributions of the third order terms of p's

are insignificant. Of special interest here is the case in which the
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second order p-terms are also negligible; for a single vintage group
having two value categories, and the case of approximately constant early

retirement rates, it is found that both the unweighted estimator

k k
) =1 Y r, and the weighted estimator 8, = ¥ w, r,, for k = 2,
1 k j=1 2 j=1 1 i

have the same variance. For common industrial mortality data aggregated
over several vintage groups, both estimators do not have the same approxi-
mate variance. The approximate biases of the estimators @l and @2 were
also computed.

It would be interesting for future investigations to apply the
technique of asymptotic expansion of distributions to develop higher

order error terms for the linear-normal approximations used in the

development of the asymptotic distributions developed in this thesis.
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