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I. INTRODUCTION 

Estimates of the mortality behavior of a property are useful for 

calculating depreciation and making management decisions relating to 

property. 

Mortality characteristics usually have been ascertained through the 

use of one of three approaches: the actuarial methods, the semi-actuarial 

methods, and the forecast method. The actuarial methods are distinguished 

from the other two groups in that they require a knowledge of the proper­

ties age. at retirement. Analysis by the actuarial methods yield a life 

dispersion pattern and, accordingly, an estimate of average service life. 

. The actuarial procedures can be applied only to plant accounts that 

have complete age identification. This limitation encouraged the develop­

ment of the simulated-plant-record or SPR methods which are semi-actuarial 

methods. 

The semi-actuarial methods only require a knowledge of annual retire­

ments, annual balances, and annual additions. The SPR methods are simply 

trial and error procedures in which an attempt is made to simulate some 

portion of a plant accounting record that may or may not permit age iden­

tification of plant retirements. 

The forecast method differs from the other two in that it does not 

require numerical data prior to estimating a life dispersion pattern and 

an average service life. This procedure eliminates formal calculation, 

and the estimates are made solely by judgment. 

The common methods of computing depreciation require an estimate of 

service life, and some methods may require an estimate of life expectancy. 
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Estimates of service life and life expectancy can be computed from a 

smoothed and extended life table of original life tables developed 

through life analysis techniques. 

Several actuarial techniques are available to construct a life table 

for depreciation applications, i.e., the individual' unit method, original 

group method, the composite original group, the multiple-original group 

method, and the annual or retirement rate method. 

The construction of a life table usually involves two steps: 

1. applying any of the above methods to the survival data 

2. graduating the observed life table and fitting the 
smoothed series to a family of survival functions 

Several methods have emerged for the graduation of an observed series. 

Miller (1946) classified these methods as "follows: 

1. The graphic method. In this method, the observed values 
are suitably plotted on graph paper and among them a 
smooth, continuous curve is drawn as the basis of the 
graduated series. 

2. The interpolation method. In this method, the data are 
combined into age groups and the graduated series is ob­
tained by interpolation between points determined as repre­
sentative of the group. 

3. The adjusted-average method. In this method, each term 
of the graduated series is a weighted average of a fixed 
number of terms of the observed series to which it is 
central. 

4. The difference-equation method. In this method, the 
graduated series is determined by a difference equation 
derived from an analytic measure of the relative emphasis 
to be placed upon fit and smoothness. 

5. Graduation by mathematical formula. In this method, the 
graduated series is represented by a mathematical curve 
fitted to the data. 
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Of these methods, the graphic approach and graduation by mathematical 

formula are the most widely used in the field of depreciation. A com­

monly used technique of smoothing and of extending the life table is 

to fit a general linear model, usually a polynomial, to the observed 

retirement ratios by the least square method. To fit general linear 

models to retirement ratios, a number of assumptions must be made. One 

of the objectives of this study is to reexamine the validity of the as­

sumption of independence of retirement ratios. 
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II. RELATED CONCEPTS 

The majority of research that has been associated with actuarial 

methods can be classified as follows: 

1. The investigators find mortality characteristics that 
• better describe the retirement patterns of a property. 

A mortality law may be expressed as a probability den­
sity function f(x) where f(x) is the percentage of units 
or dollars put in service that are retired during the 
age of interval x. This is well illustrated by the works 
of Winfrey and Kurtz (1931), Winfrey (1967), Couch (1957), 
Kimball (1947), Cowles (1957) and Henderson (1965). 

2. The investigators find and/or apply better techniques in 
which mortality laws of industrial properties are used. 
The research works of Winfrey (1967), Nichols (1961), 
Lamp (1968) and White (1968) fall into this classifica­
tion. 

Chiang (1960a) showed the approximate unbiasedness of, and zero correla­

tion between, retirement ratios. The approximate zero covariance proper­

ty has been used by several researchers (Krane, 1963; Henderson, 1968; 

Lamp, 1968; and White, 1977) to investigate various methods of fitting 

that reflect serial independence of disturbance terms.' 

Due to their importance to the central topic of this study, parts of 

the works of Chiang (1960a) and White (1977) are briefly presented. 

Let n^ be the total number of units placed in service as a group or 

vintage at age zero, and n^ be the number of units entering the age in­

terval k. In life studies of physical property, it is assumed that all 

losses or withdrawals are actual retirements from service. Therefore, 

the right-censored observations are not considered. Hence, n^ is the 

number of units exposed to the risk of failure or retirement at the be­
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ginning age interval k. 

indicates the number of units retired during the k^^ age 
interval; = \ -

denotes the estimated probability of retirement during the 
kth age interval, conditioned upon exposure to the forces 
of retirement at the beginning of the k̂ h age interval. 
By definition 

'̂ k ~ ̂ k+1 
\ =  n. , k = 1, 2, N 
* "k °k 

In depreciation applications, q^ is commonly termed a re­
tirement ratio. 

p̂  represents conditional proportion surviving. Tĥ s is the 
estimated probability of surviving during the k^ age in­
terval, conditioned upon exposure to the retirement at the 
beginning of the age interval k. By definition, 

Pk = \ = 5 k = 1, 2, ..., N 

In depreciation applications, p̂  is called a survival ratio. 

q^ indicates the unknown true probability of unit retired in 
the age interval k. 

p^ = (1 - q^) denotes the unknown true probability of a unit 
will survive during the age interval k. 

s^ denotes cumulative proportion surviving. This is an esti­
mate of the probability of surviving to the beginning age 
interval k. It is given by 

Sk = Pk-1 =k-i = ̂  ̂ •••' H - 1-

= 1.0 k = 1 

k = N 
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The number of units entering the first age-interval (i.e., n̂ ) can 

be viewed as n^ independent trials of a random experiment where each 

trial can have one of several outcomes. The outcome of a particular 

unit (trial) may be retirement during the first age-interval, the second 

age-interval, ..., or the age interval. The sum of the number of 

units retired in all ages is equal to the size of the original vintage 

put in service. Symbolically, 

di + d̂  + ... + 4% = 

Let 6^ denote the probability that a unit is retired during the age 

interval (k = 1, 2, ..., N) and 6̂  = E[q^ ŝ .̂ 

Since a unit is to be retired once and only once somewhere in the 

life span, then the sum of the probabilities retired in all ages is unity 

or 6^ + ©2 "*• ••• + 6^ = 1. Thus, we have the well-known lemma 1. The 

number of units retired, d̂ , ..., d̂  in a life table have a multinomial 

distribution with the joint probability distribution 

Prld^ " 'i- •••. 'S, • V = « ! ..t 4.! ^ (2-1) 
1 k 

Expectation, variance, and covariance are given, respectively by 

E(dklni) = n̂ Ĝ , for k = 1, 2, ..., N, 

var(d^) = n^e^(l - 9̂ ), for k = 1, 2, ..., N , (2.2) 

and 

cov(d^, d^) = -n^6j^6£, for k ̂  %, k, 1 = 1, 2, ... N'. 



www.manaraa.com

7 

It follows from (2.2) that expectation, variance arid covariance of 

the unconditional observed proportion of units retired in each age inter-

^1 *̂ 2 
val, — , — , ...» — , are given, respectively, by 

^1 1 1 

d 
E(—|n^) = ê , for k = 1, 2, ..., U," 

'Sc - V 
var(—) = , for k = 1, 2, ..., N, (2.3) 

1 1 

^k —^k^JL 
cov(— ,—) = —— , for k^&=l, 2, ...,N. (2.4) 

•̂ 1 "l ^1 

Lemma 2, The survivors n^, n^, ... n^ in the life table form a random 

vector with components having the binomial distribution, and their joint 

probability function is given by 

Pr (n^ = n°^, ng = n°2 = n'^jn^) = 

I p%., 

for =0, 1, ..., n''^_^, with n°̂  = n̂ . (2.5) 

n̂ , the number of units surviving to the beginning of the k^^ age inter­

val, is a binomial random variable such that 

E[n^] = «J S Ĥ d -
i=k 

N k-1 
var(n, ) = n ( Z 8,)( Z 0.) (2.6) 

^ î=k 1 i=l  ̂
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where 

k-1 
<l>ĵ  = Z 0. . 
K i=l 1 

Consider the random variable = d^/n^, which is the proportion 

of those units surviving to the beginning of age interval k that are re­

tired during the k*"^ age interval. It can be shown that an approximate 

value of the variance of is 

'k'l -
var(q^) =  ̂• (.2.7) 

n/1 - Z 0.) 
i=l 

For details of this derivation, see White (1977). 

Lemma 3 . The conditional observed proportion of units retired, q̂ , 

(or surviving, p^) in an age interval is an unbiased estimator with 

variance as given by (2.7); the covariance between two proportions q̂  and 

q^ (or between p̂  and p^) is zero for i j ; for i, j = 1, 2, ... N. 
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III. STATEMENT OF OBJECTIVES 

Consider the general linear model of retirement ratios, 

y = X 6 + e 

where y is an N x 1 vector of observed retirement ratios, X is a known 

(N X p) nonstochastic design matrix of ages, g is a p-dimensional fixed 

vector of unknown parameter, and e is a (N x 1) vector of unobservable 

random error with.mean vector E(e) = 0 and finite covariance matrix, 

cov(e). 

The structure of cov(e) dictates the method of fitting a linear 

model to the retirement ratios. For many data generating processes, 

it is assumed that elements of random error e are identically and in­

dependently distributed. Therefore, the covariance matrix is E(E E^) = 

0^ I^ , where the scalar is unknown and I^ is a order identity 

matrix. Under a more general formulation, the covariance matrix is 

2 
represented by a  ̂ f where ̂  is a known positive definite matrix. 

This enables the development of a number of estimators for B that 

depend upon ij; and are good in some sense such as "best linear unbiased." 

The generalized least square (GLS) estimator is given by 

1 -1 -1 1 -1 
6 = (X̂  4 X) ̂  X^ ̂  % 

which depends on ip and is best linear unbiased. ' 

In practice, the covariance matrix is not given, and is unknown 

and unobservable, and some restrictive, and hopefully realistic, assump­
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tions are made about its structure. The most common, and the most re­

strictive, Is Tp = I. In this case, S reduces to the least square (LS) 

estimator, 

1 - 1 1  
b = (X̂  X) X y 

which depends only on the sample observations. 

If the diagonal elements of are not all identical and c is free 

from autocorrelation, then $ can be written as a diagonal matrix with 

the î  ̂diagonal element given by 

GLS under the general assumption that 

. , 2 2 2, 
4» = diag(0^ ,... Og , ) 

is often referred to as "weighted least square" (WLS). 

2 2 2 
The covariance structure of $ = ipa or $ = diag(0^ , • • • , ) has 

two important implications for estimation. The first is that least-

squares estimators, while still linear and unbiased (in the case of fi­

nite but differing variances), are no longer efficient, no longer provid­

ing minimum-variance ("best") estimators among the class of linear un­

biased estimators. The second implication is that the estimated vari­

ances of the least-square estimators are biased, so the usual tests of 

statistical significance, such as the students t and F tests, are no 

longer valid. 

As mentioned earlier, vector e is unobservable. Therefore, its 

covariance structure must be inferred by an indirect method. One method 

is to use residuals, e. By finding the relationship between e and e. 
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the appropriateness of the assumption, concerning the covariance of e can 

be determined. This will not be discussed in this study. 

Another way is to examine, directly the covariance structure of re­

tirement ratios. This has been adopted for this work. 

The specific objectives of this study are as followsj 

1. to model the joint continuous and discrete distributions 
of value or vintage group and life 

2. to derive the structures of variance and covariance of 
retirement ratios of industrial mortality data under what­
ever mortality law is assumed 

3. to reexamine the asymptotic independence among retire­
ment ratios 

4. to derive the structures of variances and covariances of 
retirement ratios when mortality law is assumed to follow 
geometric distributions 

The third objective is very important in conjunction with methods of 

fitting linear model to retirement ratios and the cost of computer time. 

The ordinary least square is attributable to its low computational costs, 

and its support by a broad and sophisticated body of statistical infer­

ence. 

This study undertook such an investigation which, hopefully, will 

lead to a better understanding of the correct covariance structure and, 

hence, to ways of selecting the right method of fitting to the retire­

ment ratios of industrial property. 



www.manaraa.com

12 

IV. A MODEL FOR THE JOINT CONTINUOUS 

DISTRIBUTION OF VALUE AND LIFE 

In the field of engineering valuation, most property is measured 

by dollars rather than physical units. The age at retirement of a physi­

cal unit may be independent of the age at retirement of any other physi­

cal unit. On the other hand, the physical units comprising a vintage 

group are often heterogeneous because of their different physical char­

acteristics. 

Dollars are homogeneous, and provide a common scale for measuring 

amounts of property. However, the number of dollars invested in items 

of a property group generally is not the same as the number of dollars 

invested in other items of the property group. The age at retirement 

of one dollar is rarely independent of the age at retirement of some 

other values. Hence, dollars are not independent random variables. The 

fact that the ages of retirement of one dollar and some other dollars 

are not independent leads to the development of bivariate distribution 

of dollar (value) and age Clife). 

If there does exist a bivariate distribution of value and life then 

the relationship between them could be measured by a correlation coef­

ficient. 

The coefficient correlation lies between +1 and -1. A correlation 

+1 or -1 implies that both variables, values and life, are perfectly 

linearly related. The joint distribution of value and life is then con­

centrated along the straight line representing that linear relationship. 



www.manaraa.com

13 

The joint distribution is bivariate only in the singular sense, and one 

variable is unessential. 

When the coefficient correlation is zero, it follows that both vari­

ables are uncorrelated. It is important to note that uncorrelated does 

not imply independence. 

So indeed the bivariate model is a more general one than the model 

commonly used in previous research. However, the data that support this 

model may not be available because practical accounting rarely considers 

the bivariate model. Despite the lack of data that could be used to 

justify this model, it is theoretically worthwhile to derive the model 

that may be useful for in future development. 

Most previous research has dealt with the univariate distributions 

such as Iowa Curve, Weibull, Gompertz-Makeham, etc., to describe dollars 

surviving at any given age. In the univariate case, the surviving dol­

lars (values) or number of units are functions of ages (life), where 

the ages are fixed random variables. 

In the bivariate model, two random variables, i.e., value and life 

are considered simultaneously. This chapter presents bivariate log-

normal and bivariate gamma to describe the proportion of dollars surviv­

ing up to a given age-. 

A. Bivariate Distributions 

. I 
Let F (̂x) and ̂ (̂y), f^(x) and f2(y) be the cumulative probability 

and density functions of continuous random variables x and y. Then, a 
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bivariate probability function F(x, y) with these marginal distributions 

is. monotonically increasing from zero to unity and it is subject to the 

following conditions: 

1. F(-~, y) = F(x, -«") = 0 ; 

F(x, ") = F^(x); FC=, y) = FgCy); F(<», <») = 1 . 

2. The probability content of every rectangle is nonnegative, 
that is, for every x̂  < x^, y^ < yg, 

Pr (x̂  < X < Xg, ŷ  < y ly^ 

= FCx^, ŷ ) - FCXg, y^) - F(x̂ , y^) + F(x̂ , y^) > 0 . 

(4.1) 

•èh 
If the second cross partial derivative exists everywhere, the bi­

variate distribution has a density f(x, y) equal to its derivative and 

the condition (4.1) is then equivalent to 

2 
= f(x. y) i 0 . 

The variables are independent if and only if 

F(x, y) = F^(x) F2(y) • 

More generally, the marginal density functions f^(x) and fgfy) are re­

lated to the bivariate density function f(x, y) by 

/_oo y) dy = fj^(x); /_" f(x, y) dx = fgXy) • (4.2) 
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The study of the conditional densities 

leads to the conditional expectations E(x|y) and E(y|x) and to the ex­

pectation of the cross product 

E(xy) = jZ,y E(x|y) fgCy) dy , 

and to the classical coefficient correlation 

p = E(xy) - E(x) E(y) ^ (4.4) 

B. General Form of F(t) 

Consider a bivariate distribution of value and life. Let variable 

V represent value and variable T denote life (age). Let t(t) be the 

proportion of total dollars surviving up to age t which is equal to the 

ratio of dollars surviving at least to the age of t to total dollars 

initially put in service. In the discrete case, notationally, F(t) can 

be written as 
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F(t) = 
i 3T > t 

N 

J/' 

I V./N 'N /N 
i 3T > t ̂  

N 
I V /H 
i=l 

= E(VIT ̂  t) F(t) 
E(V) • (4.5) 

For the continuous case, F(t) is represented as 

/_% E(V[S) f (s) ds F(t) 

.00 

k f (s) ds 
F(t) = 

E(V) 

/j.°°E(v|s) f̂ (s) ds F(t) 

F(t) = 
E(V) 

. J>(V|S) TFC) DS • (4,6) 

E(V) 

where N denotes number of counts of dollars supposedly taking on 
discrete values. 

indicates number of counts of dollars surviving at age t. 

E(V|T  ̂t) represents the conditional expectation of value 
given for all ages beyond t. 
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C. Bivariate Lognormal: The 

Expression for F(t) 

Let the two-dimensional random variable (x, y) have the joint prob­

ability density function 

f ^(x, y) = f(x, y) =  ̂ ^ 

2n 0^ Og/l -

2. 

exp 
2(l-p2) 

•/x-p \2 (x-y )(y-y ) /y-y,̂  

2̂ 

(4.7) 

for -oo < x < oo, -oo < y < ooj where 0̂ , ô , ŷ , and p are constant 

such that -1 < p < 1, 0 < 0^, 0 < Og, -<» < y, < «>, and < yg < ». 

Then, the random variable (x, y) is defined to have a bivariate normal 

distribution. 

Bivariate lognormal distribution can be obtained from the bivariate 

normal distribution by using the following transformations 

V = e* 

S = e? 

(4.8) 

where V and S denote random variables corresponding to value (dollar) 

and life (age), respectively. 

The lognormal distribution of V and S are obtained by the following 

formula: 

f(v, s) = f (In V, In s) |j| , (4.9) 
x^y 
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where [j] is the determinant of the Jacobian of the transformations, 

J = 

5x 5x 
3v 3s 

9y ^ 
9v 9s 

(4.10) 

The derivatives of (4.8) with respect to v and s are 

Thus, the determinant of the Jacobian of the transformation, 

J = 
1/v 0 

0 1/s 

= 1/vs 

It follows from formula (4.9) that the bivariate lognonnal of value and 

life can be expressed as 

f(v, s) = 

2TT vs A - p' 

X exp 
•/Inv-yA (lnv-|ĵ )(lns-Tĵ ) /in s-pg 

2(l-pf) (?) 
2-, 

°1^2 

(4.11) 

The marginal and conditional densities f^(v), fgfs) and f(v|s), 

f(s|v) have the form of univariate lognonnal. 
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It can be shown that f̂ (v) is univariate lognormal, i.e., 

f̂ Cv) = —; 
vo, /2 t t  

exp 
(In V - ŷ ) 

2a, 

From equation (4.2), the marginal density of V, 

fj_(v) = s) ds. 

Ins-p. 
The substitution of w = 

'2 . 
into (4.11) and upon the completion of 

the square on w, the marginal density of V can be written as 

CO 

fl(v) = / 
7-n  n  V  i /  2 i r  a,v /l - p' 

- œ  1  

X exp 
^In V - y-

2(1 - Pi (• • m)' 
dw . 

Then, the substitutions 

u 
»- . , du ———— and dw = ——— 

/l - P' /l - P̂  

show at once that 

f.(v) = exp 
V a, 

,  0 0  1  1 2  
 ̂J-co ~ZZ exp (- J u ) du • 
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Note that 

f " —̂  e du = 1 
M 

Hence, 

f̂ (v) = — 
V /2w 

exp 

(In V - ŷ )' 

2a, 

for 0 < In V < <»; 

0 < â ; 0 < < " . (4.12) 

Similarly, fĵ (s) can be shown to be 

f (s) = — 
s 0̂  /2n 

exp 
(Ins -Wg)' 

20.2 

for 0<ln s <»; 0 < Pg < °° » 

0 < a„ (4.13) 

The conditional density of value given age can be derived as follows. 

Formula (4.3) gives 
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«vU) -

ZTTÔ agVS/l-pZ 
•exp 

-1 

2(l-p2) 

Z 2 
yin v-Pĵ  (lnv-p̂ )(ln y In 

sCgŷ  
exp 4( 

'/In s-WgXZ 

vâ v̂ ird-p̂ ) 
exp 

•1 r/iiv-M _ 

2(1-P^)1\ °i / 

2p (In v-p̂ )(In s-Wg) 

+ (1 - (1-p )) 
/ In s - ŷ \̂ ' 

(—A (4.14) 

Equation (4.14) may be written as 

1 
f(v|s) = —zzznn 

V0j /̂2ïï(l-p2) 

2 /In v-ŵ -pâ /Og(la s-Ug) 

0̂ /1 - p2 
(4.15) 

Clearly, f(v|s) has the form of lognormal with-parameters 

+paĵ /a2(ln s - Pg) , 

ana 

o^a  - p̂ ) 
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E(v|s) can be deduced by the following relationship. If X is distrib­

uted as lognormal, 

1 
f(x, y, a) = 

xa /2¥ 
exp 

th 
then, the r moment of X, 

2 2 
= expÇŷ  + (4.16) 

For r = 1, (4.16) gives 

E(x) . e%+° '2 . (4.17) 

It follows from equation (4.17) that 

Oj _1..  .2. 
E(V|S) = exp ̂  + p (In s - ̂ 2̂  + ̂   ̂) 

0 OL/o ,  1 .  2  

= s exp I - p Ô /Og Ug + 1 — (4.18) 

Equation (4.6) gives 

F(t) 
" E(VIS) f̂ (s) ds 

E(V) 
(4.19) 

V is distributed as lognormal (4.12). Formula (4.17) gives 

E(V) = (4.20) 
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The numerator of (4.19) is evaluated as follows. 

E(V|S) f̂ (s) ds = 

(4.21) 

Upon the transformation of In s= Ç in the integral of (4.21) yields 

.CO 1 I " 5(2̂ 2 Zpo.Gg) + w?): 

—H 
2 * 2 

Upon the completion of the square of the power of e in the above inte­

grand, the right hand side of (4.22) may be written as 

exp 
-w,: + (w, + pô o,): \ 

20.2  ̂

In t 

exp 
-(; - (Pg+00̂ 02))' 

2a J  
dç 

= exp^Ug P O1/O2 + ^1^/2)- *( 

In t - y - p a a \ . 

^  — } )  
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Therefore, E(.v|s) f̂ Cs) ds = -

exp (ŷ  + /2) (.1 - $( ) (4.23) 

The substitution of (4.20) and (4.23) into (4.19) yields the proportion 

of dollars surviving up to age t, 

/In.t  - y - p a.a„ \ 
F(t) = 1 - $(  ̂

From the definition of coefficient correlation, 

cov(x. y) 1̂2 

var(x) • yar(y) *̂ 1*̂ 2 

gives 

p a,a, = a. 
r2  ""12  '  

Hence, 

/Int - y- - O-gl 
F(t) = 1 -  $( ^ 

where 

2 
0 (t) = e ̂  dz . (4.24) 

/2ir 

The sample estimate of FCt) can be obtained simply by replacing the un­

known quantities with the sample quantities. 
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 ̂  ̂̂ ~ 2 ~ ̂ 12 \ 
F(t) = 1 - —j, (4.25) 

<̂ 2 

where Pg, and Og are obtained by the maximum likelihood derived from 

the bivariate normal: 

Z t S(v - ij,)(t - y.) 
i^ - i-i 11 I  

2̂ <̂ 12 = " 

Zv E(v - C Z(t, - 5,)̂  

D. Bivariate Gamma; The 

Expression for F(t) 

Consider random variables 

X = U + V 

and (4.26) 

Y = U + W 

where U, V and W are independent gamma distributed variables with param­

eters a, b, and c, respectively, i.e., 

= fA) ' 

= TfFT ' 

f(w) =  ̂e*. (4.27) 
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Then, the joint distribution of X and Y, 

-x-y 
_/ \ e - fm. 
f(x, y) = r(a) r(b) r(c) t 

(4.28) 

is called bivariate gamma. 

The probability distributions of x and y can be shown, respective­

ly, to be 

f(x) = 
a+fa-1 -X 
X e 
r(a+b) 

and (4.29) 
a+c-1 

= f(Sô ̂ 

Bivariate gamma distribution of (4.28) can be derived as follows. 

Let 

u = ; 

then 

V = X - Ç 

w = y - Ç . 

The determinant of the Jacobian of transformation of (4.30), 

(4.30) 

J = 5(u, V, w) 
9(5, X, y) 

10 0 

- 1 1 0  

- 1 0  1  

= 1 

The joint distribution of u, v, and w can be written as the product 

of their distributions since they are independent; 
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f(.u, V, w) = f(u) f(v) f(w) 

r(a) r(b) r(c) 
1 a-1 -u b-1 -V c-1 -w 

u e V e w e . (4.31) 

The substitution of equation (4.30) into (4.31) yields: 

f(ç, X, y) - r(c) ̂  ®  ̂(x-O e * x 

X ( ,  -O'-L 

or 

f(Ç, X, y) p(2) r(b) r(c) ̂  (x-Ç) (y Ç) ê  . 

The joint distribution of x and y is then obtained by integrating out 

the above equation with respect to Ç; that is 

"(x+y) min(x,y) . , -  ̂i r 

y) = r(.a) r(b) r(c) 4  ̂ (*-0 ® • 

(4.32) 

The best property of bivariate gamma distribution is the linearity 

of its regression line, i.e., 

E(X1Y) = b + y . .  (4.33) 

The conditional expectation of X given Y, E(XIY), can be computed as 

follows. 

E(X|Y) = E((U + V)|Y) 

= E(U|Y) + E(V 1Y) .  (4.34) 
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To find E(U(Y) it is necessary to know the joint distribution of Y and 

U, and, hence, the conditional distribution of U given Y. 

Equation (4.26) gives 

Y = U + W. 

Let U = n then 

w = y - n. 
(4.35) 

J = = 1 . 

The determinant of the Jacobian of transformation of (4.35), 

1 0 

-1 1 

U and W are independent random variables, therefore, their joint distrib­

ution can be expressed as the product of their distributions: 

9(u, w) 
3Cn, y) 

f(u, w) = f(u) f(w) 

r(a) r(c) 
a-1 -u c-1 -w 
u e w e (4.36) 

The joint distribution of Y and U can be obtained by substituting equa­

tion (4.35) into equation (4.36). 

f(n, y) = f̂ ^̂  (n, y) |j| 

 ̂ rf-l e""̂  (y - n)̂ "̂  r(a) r(c) 

1 a-1 
r(a) r(c) 

(y - n)C-i e'^ . (4.37) 
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The substitution of Ti = u into equation (4.37), will give 

f(u, y) = r(a)̂ r(c)  ̂ * (4.38) 

The conditional distribution of U given Y, 

1 a-1 , Xc-1 -V 
TU-) r(c) ° = 

1 a+c-1 -y 

(4.% 

E(U|Y) = / U  f(uly) du 

= rw ?Ccj ! 9̂  (4-4°) 

The substitution of Ç = u/y; du = y dÇ, into equation (4.40) results 

in 

= ru) r(cj f (1 - O""'' y « 

= " r(l) He) è (*(1 - « • (4.41) 

This integral is known as the beta function. Hence, 
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<̂"1" = ' rw ne) <=) 

_ y r(a + c) rça+i) r(c) 
r(a) r(c) r(a + c + i) 

= (a) r(a + c) r(a) FCc) , 
(a + c) r(a) r(c) r(a + c) 

thus, 

E(u|Y)=j^y. (4.42) 

To evaluate E(V|Y), recall that V and Y are independent. Thus, 

E(V|Y) = E(V). 

The distribution of V is a gamma with parameter b, hence, 

E(V) = b . (4.43) 

The substitution of equations (4.42) and (4.43) into (4.34) results in 

E(x|y) = b + y . 

If X and y denote value and life respectively, then formula (4.6) be­

comes 

ECtiy) fj(y) dy 
= ïé  • • (4-44) 

The numerator of (4.44) can be evaluated as follows. 
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E(x1y) f̂ (y) dy = 

r" e"y g-y 
"• 4 r(a + c) 4r + ar c a  +  c - f l )  ''y 

- "(1 - (t)) + »(1 - r̂ +,+1 (t)) . (4.45) 

The denumerator of (4.44) is evaluated next. It follows from (4.29) 

that variable x is distributed as a gamma distribution with parameter 

a + b. The standard result gives 

E(x) = a + b . (4.46) 

The proportion of dollars surviving up to age t is then obtained by sub­

stituting equations (4.45) and (4.46) into (4.44); that is, 

m, . • a + D 

where 

a+c-1 -y 
=̂4-. (t) = L  ̂
a+c •'O r(a + c) 

This is known as the cumulative gamma distribution. 
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V. A MODEL FOR THE JOINT DISCRETE DISTRIBUTION 

OF VALUE GROUP AND LIFE 

Consider a large number, n, of units that are classified into M 

property groups,.with unit values, respectively â , â , ... â . The 

practical import of the assumption that n is large is the fact that 

independence can not be expected to hold in the case of property group 

consisting of a few units. Furthermore, assume value groups â , â , 

..., have different life distributions. 

What follows below are the derivations of retirement ratios for 

the above kind of mortality data, and of the corresponding estimates 

of the variances and covariances. IMder the different mortality char­

acteristics, asymptotic covariances of retirement ratios are generally 

not zero. When the value-categories do have the same life distribu­

tion, it can be shown that asymptotic covariances of retirement ratios 

are zero. 

The models based on these data merely represent mathematical con­

ceptualizations. However, with some modifications these models can be 

applied to industrial mortality data that are available from the rou­

tine accounts of the firm. 

The notational and functional relationships introduced here will 

be used to derive estimates of retirement ratios, and estimates of their 

variance-covariance structure. 
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indicates the cost (price) per unit 

denotes the number of units of value a in the property 
groups under consideration  ̂

represents the number of different value-categories, and 
hence, the number of distinct life distributions 

M 
Z n denotes the total number of units in the property 
s=l % 

group under consideration 

n 
s is the proportion of units of value a in the property 
n ® 

group under consideration 

indicates the number of units of value a retired during 
the age of interval j 

âg. 
J. is the observed proportion of units of value a re-

"a 
s 

tired during the age of interval j 

denotes the true probability that a unit of value ag re­
tired during the age interval under whatever life-r 
distribution is assumed 

M 
2 a IT p 

s=l ® ®s ^Sj 

I % \ 
J J 

denotes the number of retirement age intervals 
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N N M 
A = I .  X .  =  Z  Z  a  V p 

j=l  ̂ k=l s=l ® 

M N 
=  E ( S p  )  a  T T  
s=l j=l V ® ®s 

M 
= E a ÏÏ 
s=l  ̂ % 

A. The Case of Two-value Category 

1. Derivation of observed retirement ratios 

To gain a better understanding and increase the ease of computa­

tion for the time being, assume that a property group is classified in­

to two distinct values, say a and b. 

The retirement ratios are determined as the quotient of the number 

of units (or dollars) retired during the age interval divided by the 

number of units (or dollars) surviving at the beginning of that age 

interval. 

r̂  = observed retirement ratio for the 
age interval 

_ dollars retired during the k̂  ̂age interval 

dollars surviving at the beginning of the k̂  ̂

an + b n, 
\ ^k 

a n  + b n , - Z ( a n  + b n ,  )  
cL  b 3.. b. 

11 1 

(5.1) 



www.manaraa.com

35 

Note here that the subscript 's' is dropped out to facilitate writing 

the term. Later on this subscript will be needed in considering for 

the case of the property group having been classified into multivalues. 

Both numerator and denumerator of (5.1) can be divided by n = 

n̂  + n̂  to give: 

n n 

+ b • — 
n n n 

a 
+ b • — 

n % 
n °b 

- - Z(a • 
n 

+ b • — •—-) 

i a 
n n̂  

With the definitions of I T ' S  and p's as given above, r̂  can be expressed 

as 

"a \  * '•  "b  \  
r. — • (5.2) 

air +bTT, - E(a7r p +bTr p, ) 
3. D  ̂ a. a.̂  b 

In terms of X,  and (5.2) can be written as 

\  X -  E X .  -  Z e .  
i  ̂ i  ̂

X,. 1 k 
A - 1 - eyCX - A\) 

(5.3) 
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Using the Taylor expansion. 

k °̂k  ̂
= 1 +7ii  TST+Cl T3-) + . . .  (5.4) 1 - C°^(A - X\ )  (A - %."%) ^ ^ k 

With the substitution of equation (5.4) into (5.3), r̂  may be approxi­

mated by the linear expression: 

\ \  ̂ (X - xy (5.5) 

where 

° h • ° •k ° V'" -
i=l i-1 

2. Derivation of large-sample covariance of r̂  and r̂  

The covariance of r, and r„ can be derived as follows. For k = 1 
JL j 

and k = 3, (5.5) gives 

Ti = + Ê /X 

and 

£3  ̂ (.Ĝ  + Eg) 

3̂ " '''3 (X - Xĵ  - Xg)  ̂a  -  X ^ -  Xg): 

The covariance becomes; 
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cov(e., E ) , (var(E ) + cov(e., 

'3' = nxTx̂  ̂3 
^2» 

= l/X(A - [(̂  ~ ̂ 1 ~ ̂ 2̂  cov(Ê , Eg) + 

+ ̂ (̂varCÊ ) + cov(Ê , Ê ))] . (5.6) 

According to the lemma 1 (Chiang, 1960a), the number of units re­

tired, in each age interval, from each value category, â , have multi­

nomial distributions with parameters n p , p . Under 
®s %1 ®sN 

the multinomial distributions covariance and variance of Ê  can be 

evaluated as follows. 

cov(e , E ) = cov(E a TT (p - p ), Z a i t  (p -p )) 
 ̂ i  ̂ % %i %i j ® % %j %j 

= ̂  cov(a TT (p -P ), a TT (p -p )) + 
i ® ®s ®si Si ® ®s %2 

+ E Z cov(a TT (p -p ), a n (p -p )) 
sfr ® S %± %i \ ®rj r̂j 

= Z(a TT cov(p , p ) + 0 
® ® S %± ®sj 

Note that covariance of p*s that come from different value groups are 

zero. 

It follows from (2.4) that 

â . ̂ a . 
ccv(p , p )  ̂• 

â • 3 • n 
SI SJ SG 
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Hence,. 

With the definition of ê . 

var(e ) - var(E a tt (p - p )) 
 ̂ s ® %i %i 

= Z(a TT var(p ) + 
s ® 

+  Z Z ( a  TT  ) ( a  Ï Ï  )  co v ( p  ,  p  )  
s¥r  ^  ®r  ® S  %i  S i  

%(a_ TT. var(p ) 
s ® %i 

But 

. "a . 

SI a 

Thus, 

var(e.) = Z —— p q . (5.8) 
® "a_  % i  %i  

For M = 2, it follows from (5.7) and (5.8), respectively, that 

P'a, "a. <'• Pb, %. 

cov(£., £.)  ̂ :  ̂
: â % 
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and 

Pa. 'a. "• Pb. %. 
var(e.) = + ^^ ^1 

J n n. 

The substitution of X, A '̂s, and variance-covariance of e's into (5.6) 

yields 

cov(r̂ , r̂ ) = (a TT̂  + b Tiĵ )  ̂x 

— 2  

X (a TT +bïï, - aïï p -bir, p, -air p - b p, ) x 
a b a '̂ â  b '̂ b̂  a ̂ â̂  b 

X [(» + b - a - t 'b Pb^ - a "a Pa^ ' ' "b Pbj' " 

2 % 'a 2 '''As 
< -  V  — ^  -  " >  " b '  — " a  P » / "  \  P b j '  '  

(a „ (b i,y Pa, Pa, 

' W ^ 

"" "b'^ Pb, Pb, 
^ —)] . . ' (5.9) 

% 

After the terms in the numerator of (5.9) are multiplied out, covari- • 

ance of r̂  and r̂  becomes: 
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covCXj^, t.) = (a îr + b Tt ) x 

X (a 11^ + b - a Pa^ - ' \ ̂b^ " ^ \ \ \ " 

X [«a ((a + (a (b Hj,) p^^ p^^ Pb^ + 

+ (a P,^ <" "b' \ ̂3 Pb^ 

- (» •'f P,̂  - (= C "fc) P̂ j P̂ j + 

+ (a n,)3 P^^ + (» (b "j,) P,^ P^^ 

- (= \ \ \ - "b' ''aj P»; "bj' + 

+ n̂ -\(a ir̂ Xb ir̂ )̂  p̂  ̂ P,̂  + (' \)̂  Pfĉ  ̂P̂  ̂+ 

+ (a TT^Xb Pb^ Pbj \ * <'' Pbj Pbj \ 

- (a \)(b Pbj Pbj - <' "b*^ Pbj "bj * 

+ (a Y» P,^ + (•> ^b^ fbj 

- (a \)(b Pb^ \ Paj - "> V^ "bj fbj "N" ' 
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The substitution of q = 1 - p and q, = 1 - p, into (5.10), along 
1̂ 1̂ 1 1 

with the further simplification the cov(r̂ , r̂ ) may be expressed as 

cov(rĵ , r̂ ) = (a ir̂  + b TT̂ ) ̂  x 

2 2 _2 
X + b - a - b 

X "" V /a/Pb^ - * 

+ (a t :/ (b Pa^(Pa^ P^^ - + 

+ (» (b 1,^) P,^(P^^ + 

+ n̂ -lc(a ir̂ )(b Pb/̂ aj ' "b,' + 

+ (a \)(b Pb/Pb̂  \ - \ Pa,) + 

+ (a ir̂ Xb Pb/% Pbj - \ Pb̂ »] • 

If the life distributions of the value groups a and b are identical, 

p = p = p. for i = 1, 2, 3, ..., N, then it can be easily observed 
®i î  ̂

that 

cov(r̂ , r̂ ) = 0. 
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3. Derivation of large-sample covariance of rg and r̂  

Recall that , the assumption that the property group is categorized 

into two value groups, say a and b, has been made. It follows from 

(5.5) for k = 2 and k = 3 that 

9̂ /Ï _ Ï  ̂̂  1 \ + Ac 

and 

2 - V - V '2 (A -

3 (X - - Xp (X -  -  X^)  (A  _  

With the use of the definition of covariance, covariance of rg and r̂  

can be written as 

covCr̂ , r̂ ) = (X -  X^)  ^  (X  -  X^ -  X^)  ^  x  

X ICX^CX - X^) + X^X^) cov(e^. Eg) + 

+ (X - Xĵ )(X - X̂  - Xg) covCCg, Ê ) + 

+ XgfX - X^ - Xg) cov (e^, Eg) + 

+ XgCX - X^) varfEg) + X^X^ var (E^)] . (5.12) 

Covariances and variances of E ' S  in (5.12) can be evaluated by (5.7) 

and (5.8), respectively. 
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The substitution of X, 's, variances and covariances of e's into 

(5.12), permits the writing of the covariance of r̂  and r̂  as 

cov(r_, r-) = (a TT + b ir, - a IT p - b TT, p, ) ̂ x 
2 3 3 D â 2̂ b 

2 2 
X (a IT  + b IT ,  -  Z (a IT p + b TT, p, )) x 

a b a a. b b^ 

, [(-(a V 4r-̂  - V )((" \ Pa,+b ' 
a b 3 3 

X (a TT̂  + b \-a Pâ -b \ + 

+ (a P̂  ̂+ b TT̂  Pbgif* \ Pag + ̂ \ Pb,)) + 

à̂_ â- o Pfeo b̂. 
+ Ma TT \ ̂ - (b TV  ̂ X 

a Ha b n̂  

x(a7r +bTr, -a.TT p -bir, p, )x 
Â D 3. 3̂  D 

X (a TT̂  + b TT̂  - a TT̂  p̂  ̂- b p̂  ̂- a %a Pa, ' ̂ "̂ b ̂ b,) ̂  

2 ^̂ 3 2 

X (a ir̂  + b Pb̂ ) x 

X (a 7T^ + b TTb - a TTa Pa - b P^, " a P^ - b P^ ) + 
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+ «a V ). x 

X (a TT  ̂ p + b Fj, p  ̂ Ka ir̂  + b iTj, - a Tt̂  p - b p  ̂
J J 1 

+«* 'a) ' 
a 0 

" (a ir^ P,^+blT^ pj,^)(a + b Pj,^)J . 

The multiplication of the terms in the numerator of (5.13) yields 

_2 
cov(r„, r ) = (a IT + b TT, - a u p̂  - b tt, p, ) x 

Z J Â D 3. D 

^ ^ -2 X (a TT . + b ir, - a IT 2 P - b ir, S p, )) x 
a b a 1=1 *1 ° i=i °i 

X [n,-l(-(a 1,/ P,̂ P,̂  - (a 1,/ (b 7r̂ ) p̂  ̂

+ (a V'' P,̂  + (a O" 'b' % Pa; ̂ 3 «"b̂  

- <a V \ Paj Pbj - <" ''b'^ \ 

+ (a <>> "b' \ \ Pb^ + "• fa/aj 

- (a V' Paj fa/ 'a^ " "a'^ » "b' ^a^ ^b^ 
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Ca K/ Cb Y \ \ \ 

(. (b \) P,^ P,^ - (a (b P,^ P,^ P,^ 

(' V' \ \ \ - "a)' V 'a, ' 

" '' \ \ S * (' V (' \' Paj Pa, \ Pb̂  + 

- (a w^)- (b p^^ P,^ Pb^ - (» V^ Pa^ Pa, Pb, + 

+ (a 17̂ )̂  (b ,],) P,̂  ̂P,̂  Pb̂  + (a (b Pâ  Pa, Pb̂  Pb̂  + 

+ (a ŵ )3 (b p̂  ̂P,̂  Pb̂  + (- (' V' Pâ  Pa, Pb,' + 

- V'Pa,  ̂ V 

+ (a Ty <b \) P % Pb * V̂  C' V 'a, %. ̂b. a G ag ag "3 2 "̂ 2 3 
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V" faj % "a, ̂3 - (* V \ % % "b, 

(a (b T̂ ) P,̂  Pb, - (= C Pâ  \ "b, "bj + 

+ <" V \ \ % "bj + 

+ (a 1T^)^ (b ,^) P,^ Pb; + (= V^ "> V^ Pa^ \ \ "bj' * 

+ n̂ '\-(a V' (' V' Pb, Pb; "aj " V̂ '" V' ̂b, \ + 

+ (a -u/ Cb Pb, Pb, Pa, Pa, + "a*'" "b'^ Pb, "b. Pa, Pb, 
'1 " 2  ° 3  '1 " 2  "3 "1 

- (a u^)(b Y p^^ Pb^ Pb^ - C- \) Pb^ \ Pbj + 

4 2 
+ (air̂ )(bV Pbj Pb2 \ "bj ̂  V \ Pb; Pb, -

(a ,,)2 Cb Y' Pb^ Pb, Pa, Pa, " V" ^b, ^a, Pb, 

(a W^)(b Pb^ Pb; Paj Pb; - <" V'^ Pb^ Pb; ̂ bj ̂ b 3 
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<•' (•> 2̂ ''"3 ' '"''2 ''''3 " "" * 

+ (a 'b; '•bj \ * V" \ \ ''bj. •" 

+ Ca (b p p p + (a w^)(b P^ ^ P^ + 
^ J Z 2 3 

+ (a %)' Pb̂  "b; "ai ̂  V ̂ 2 ̂ bj ̂ b, + 

+ (a K^)(b ,r^)2 Py^ Pa^ + <" V* \ \ * 

+ (= V' (" v' ̂2 '"3 "• '"2 ''3 ''1 

(a ny (b Pb2 \ \ V'" V Pbj fbj "a^ "b^ 

""2 ̂ 3 "aj "  ̂\ Pb̂  Pa, + 

+ (a IJO, Pbj ''bj •'b, + V'' ̂2 ''••3 '"'=1 

- V̂ '' "bj ''S "̂ 1 ''"1 ' "• \ \ \ 
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- (» V "bj "bj ̂ 2 'bi - "b/ ̂ 3 "bi -

- (a C \>̂  Pb̂  fbj ̂ 2 • V̂  "bi ̂ 3 ̂2 * 

+ (a •<•/ (b Pt^ P,^ Paj + V^" "b'^ ^b, "b, "32 "b^ + 

+ (a (b \)^ P^^ Pa2^ + V'" Pb^ "bj '»2 ^2 ' 

- (» V*" "bi ®b3 ̂ 2 ' ""'' '"l ̂"3 ""z * 

+ (a V'" V^ Pb^ Pbj Paj Pbj * " "b'" ^b^^ Pbj 'b3 + 

+ (a 0(b Pb^ Pb^ Pa2 \ * "b'" Pb^ \ Pb, + 

+ Ca ir/ (b V^ Pbj %2 ̂ 3 + V V^ Pb2 %2 "=3 '' 

+ (a \)(b \)^ Pb^ + <' V'' Pb2 ^2 ^"3 " 

- (a (" Pbj %2 '=1 ^»3 ' S ""2 "'3 '"1 ' 



www.manaraa.com

50 

- v*' \ \ ""3 • " ""2 '"2 ""1 "" 

+ (a ir^)^ (b Pa^ + V*' "b 

+ (a ',)(b Pbj \ "bj + (" V'' fbj 'b^ "bj "b 

After extensive simplification, (5.14) may be presented by 

cov(r2, r̂ ) = (a tt̂  + b - a p̂  ̂- b tt̂  x 

2 2 
x ( a " i ï + b T r ,  -  a ï ï  Z p  - b ï ï ,  E p ,  )  x  

a b a 1=1 b b̂  

x [n/\(a (b Pâ tPâ  ̂ b̂  " \ ̂3' + 

+ (a (b Pb^'Pa^ \ - \ Pb^) + 

+ (a (b Pa^ Pbz'Pa; ^b^ " \ * 

+ (a V' \(Pb3 - Pa,) + 

+ (a K/ (b Pt^ - P,^ Pi^) + 
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+ ta " ''"s' * 

+ (a (b P.; '"bj - \ "bj* * 

+ (a ir̂ )̂  (b 71̂ )̂  Pb̂ CPb̂  - Pâ ) + 

+ Ca v/ (b TTj,)̂  P,̂  Pb̂ 'P*; \ • "»! * 

+ (a V' <" "â  Paz'Pb, ' + 

+ (a V' (b \ * 

+ (a Cb \) P,̂  %̂ ''aj "b̂  " ''a; 'b̂ ' * 

+ (a \)' Cb V PagCPŷ  - Psy) •" 

+ (a \)̂  Cb %) P̂  ̂Pâ fPbz - •" 

+ (a (b \) Pa/̂ Paj ' ̂3' + 

+ Ca Cb »(,) Pâ CPa, Pb̂  " "â  "b/ + 

+ Ca <b "b' Pa, Pâ tPa, "b̂  " "a, + 
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+ (b Pl̂  - P;,̂  P̂ )̂ + 

+ Ca ir^)^ (b Pb^'Pa, ' \ + 

+ Can^)^ (b TCj)^ Pa^CPb^ \ - \ Pa,) + 

+ (a ir^)^ (b ' "b,' + 

+ (a n^)^ (b Pb^'Pb, \ - \ Pa,) + 

+ (a -nf (b Pb; 'a^'^b, ' * 

+ Ca Cb %h)2 P^^ Pb^'Pb, "a, " fb, %' + 

+ (a C "b'^ \'^2'S ' ' '3' " 

+ (a V' ("^'^Pb/a/Pb, Pa^ " Pa, Pb^' + 

+ <».V<''V Pbi Pb̂ tPa, - Pb,) + 

+ (a %,)(b Pb^ Pb^fPb, - Pa,) + 

+ (» *%)(» "b)' Pb̂  Pbj'Pa, Pbĵ  - Pb, Pâ ) + 
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+ (a 7t^)Cb Pbj'l'aj - Pb,) + 

+ (a w^)(b Pb/Pa^ - Pb,) + 

+ (a 71^) (b Pbg^'Pb^ - Pa,) + 

+ (a \)(b Pb^CPb, Pa^ - Paj Pb^' + 

+ (a Tl^)(b Pb^ Pb^'Pbj Paj - Paj ^b^" ' ' 

When the property of values a and b are respectively subjected to 

the same mortality law, i.e., p = p 5 p. for all i, then all the 
i  ̂

terms in the square bracket of (5.15) cancel out; therefore, cov(r̂ , r2)=0. 

4. Derivation of large-sample covariance of r̂  and r̂  

The covariance of r̂  and r̂  ̂where k < & can be derived as follows. 

For k = k and k = £, (5.5) gives 

, , A 
1̂. = <}>u + _ r I \ +  ̂
k k (X - E X^) (X _ z x.)2 

i  ̂

and 

E, , « 'j' 

fo = #0 + /I _ T I \ + 

J j 1 
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From the definition of covariance it follows that 

cov(r, , r.) 
cov(ê , y h : «j) 

k' i a  - 1  y u - z )y) ( J .  I  - 1  x,)2 
1 J i  ̂ j : 

"ovCe*, Z El)  ̂ cev(z =1, Z e.) 

+ 2 + T  ̂ 2 
(A - Z A.) (A - Z A.) (A - Z AJ (A - Z A.) 

i j ^ i j ^ 

The covariance of r̂  and r̂  may be written as 

cov(r, , Xp) = (A - E A ) ^ (A - E A.) ^ x 
k X, i 1 j : 

X [(A - Z A )(A - Z Aj) 'cov(E , e.) + A. (A - Z A ) x 
i j  ̂  ̂ i  ̂

 ̂(var(E') + Z cov(e, , £.)) + A (A - Z A.) Z cov(E., e.) + 
k jfk  ̂ : i .  ̂

+ \ var(E ) + Z cov(E , £.))] 
i  ̂ i,jfi J 

(5.16) 

for i = 1, 2, k-1; j = 1, 2, &-1. 

Under the assumption that the groups of property of values a and b 

are respectively subject to the multimonial distributions, covariances 

and variances of e's in (.5.16) can be computed by (5.7) and (5.8), re­

spectively. 

The substitution of A, A '̂s and variances and covariances of e's 
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into (5.16), permits the covariance of r̂  and r̂  to be written as 

cov(r , r ) = (a IT + b TT - a IT E P - % TL Z P, )~̂  x 
K J 6  a  D  i ^ i  i  i  

x ( a ï ï + b 7 T , - a T r Z p  -  b  Z  p ^  )  x  
a b a . a. b . b. 

J J J J 

x[(aïï +bïï, - an Ep -bir. Ep, )x 
a b a ̂  a. b . b̂  

X  ( a  n  +  b  TT  -  a  TT  E  p  - b ï ï ,  E p ^ ) x  
a  b  a  . a .  b  .  b .  

J J J ] 

(a TT )̂  (b TT )2 

\ "a. - — 'b,) + ' 'b + 

+ (a TT + b TT, - a E p, - b tt, E p, ) x 
a b a i b i b̂  

(a 17̂ )2 (b 

(a TT )̂  

"b 

+ (a TT̂  Pa + bTT̂  P ) X 
k k 

x(a77 + b TT, - a w E p - b n, E p, ) * 
3 D & . 3. D . D . 

J J J J 

(a p (b p 

— — l \ ' '  
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+ (a TT p + b ir p ) Ca TT p + bir p ) x 
^ \ ^ \ ^ H ^ 

( a TT Cb TL)̂  

(a 7r.)̂  (b TT,)̂  

% ifj \ % jj 

for i = 1, 2, ..., k-1; j = 1, 2, ..., 5,-1; k<&. 

After the terms in the numerator of (5.17) are multiplied out, 

(5.17) can be written as 

covCr^, T^) - (a ir^ + b - a E ^ \  ̂  " 

X (a n +b IT, - air Zp -bir, Zp, )̂ x 
3. D 3 » 3, D . D. 

J J J J 

X [(n ~̂ (-(a ÏÏ )̂  p p - 2(a tt )̂  (b ir, ) p p 
a a 3% ^ » *k 3% 

2 2 
- (a TT ) (b IT, ) p, P + 

» t *k *4 

+ (a IT )" p p Z p + (a (b ,r^) p P .E P̂  + 
K 2 J ] K & ] J 

+ (a IT ) (b TT.) P P z P + (a TT ) (b ̂ )̂ p p Z + 

+  ( a  TT P  P  Z p _  +  ( a  TT  ) ^  ( b  T T . )  P  P  Z  P y  +  
^ \ h i ^ \ h i i 
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+ (a V % I I \ 

- v '  %  %  I f  » % ' \ \ ?  5  ^  

(a (b 71^) p p Ï S p p 
K £ 1 J J i 

(a (b p, \ J ! 'b. 'b. 
K .x ,  1  J 1  J  

AS- ' ' ' / ' " W A S '  

- (a v' C V % % A ̂ a. - V" Pa.+ 
jfk J 

' % \ : ]:k s ' 

+ (a V' V % I j% s ̂ 

+ (a TTj (b TT̂ ) p̂  p̂  S Z p p + 
"i 

a- . "b' r,. 

+ V V Pâ  I \ Pa. 

^ < ^ " / P a , \  P̂  p,̂  + 

+ (a irj (b TT̂ ) P„ q̂  p„ + (a ÏÏ )̂ (b tt̂ ) p̂  q, p 
b k \ a 
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- \ \ 'a, I '4 - 'a.' '' V '"l 

- (a V' (' \' % \ 'b, : 'a. 

- (a V' <" V' \ \ \ Î \ 

- (a 
\ ̂2 i i 

- (» V' (' "b' Pâ  'a, I %-(̂  V' (»'„) W I \ * 

'  ^  J  \ 'aj+% '  \ ^  I  \  

+ (a (b -n̂ } Î I Paj + 

+ (a V' Pa, Pb, J ^ ^a, ^b. + 

+ (a ir^)' P,^ Ï 1ai+ V' <' "b* \ \ { \ \ 

+ (a *,)' (" % "a, ^ Pa, "a, + 

+ (a V' <" "b' Pb̂  'b, ̂ Pa, \ -

- (a v" Pa. Pa U Pa. P.- " "a. U 'a. "a, 
a' "i  ̂

\ °l±é2 "i i 
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C- V » \ Pa, 4 'aj 

" 'b'" \ ' 

+ n^-l(-(a 1,/ (b Pb^ Pbj -

- 2(a »̂ )(b Pb̂  'b; - V' Pb̂  "b, + 

+ (a (b ir^)^ p p E p^ + (a Yft \)^ Pfc Pb ^ Pb 
k & ] J K Ji J 

+ (a Y<1> V' Pb. Pb, ^ Pa. + "• Pb. Pb, ^ Pb. + 
k 2 ] ] k & ] J 

+ (a (b Pb^ \ I Pa^ + VC Pb^Pbj I Pb^ 

+ (a Y(b Pb^ \ I Paj + (" V'' Pb^ Pbj I Pb^ 

V' V' Pb, Pb, J : Pa, Paj 

<-V(^V Pb, Pb, : ^ Pa, Pb. 

(a V' Pb, Pb, ^ ^ Pb, Paj - (' V'Pb/b,:: Pb, P, 

(a ÏÏ )^ (b u.)^ p p I p. -(a TTjCb y'pi, Pk ^ 1 
® * bk a.% ĵ k °j ® b b% 
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3 ? Pv - P.- Pk 2 Pk + 
'• \ 't jA ""j 

. (a V' C V' \ ^ 'a, ̂  ' 

+ (a IT J lb 11^) p, Î S P,, P^^ 
k "H i i* i i 

+ 'b) fb,  ̂ \ \ * 

+ (= \)^ (b \ \)(b \) Py^ PbJ \ + 

+ (a wp(b V p̂  ̂qŷ  P,̂  + <•' V \ b̂j 

- (a \ \ \ i '»)(' "!•' 

- (a \)(b \)" P, Pb, I \ - "> V' "b, "b̂  I  \  -

- U !•/ (b Pa^ \ ! "b, - V V \ \ I \ 
X X 

( a  V ( b  p ^  P b ^  J  % - ( "  " b ' '  \  " b ^  I  \  *  

uv <^V 
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+ (a \)(b Z j V + 

+ (a ir^Xb Z S p p +<b V^Vb.J EPb.Pb. + 
K * i j i j  K  & i  J  1  J  

+ (a (b P,^ I Pbj^ %/(= V"' W^ 

+ (a \)(b Hj) p^^ P,^ Ï Pb^ X+O» Pb^Pb* C Pb^ ^b. -

- V' <̂  \> \ S ̂ 'b/bj -

-  <^ v ( ' v 'pa, S y  \  Pbj -

-(aV* V'Pb/a,yPb/bj-

for 1 - 1, 2, ..., k-1; 

j = 1, 2, ..., &-1; 

k <SL. 

After extensive simplification, (5.18) may be expressed as 

cov(r̂ , r̂ ) = (a TT̂  + b TT̂  - a TT E p̂ _ - b 17̂  Z P̂  % 
i l  1 3 .  
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X (a n +biT, - air 2p -bir, Zp, ) x 
â b 3 . 3 - D . D, 

j j ] J 

X [n̂  ̂ ((a TT̂ )̂  (b TT̂ )̂  p̂  (p̂  Z p̂  - p̂   ̂P. ) + 
*k *% j tj b&j 

+ (»  V  <" ^  -  \  ̂ V  + 

+ (» v' <" W \  I  \  -  \  I  *  

+ (a TlJ (b TT̂ ) p̂  (Z P̂  )(Pb Z Pg - P„  ̂Pv ) + 

J J k i'*i Ai V 

+ v' C  ̂"ai • \ i '»i' 

+ Ï - \ ̂ "a,' + 

+ (a (b 17̂ )2 p (£ p )(p Z p - p r p ) + 
X/J J K. 1 1 k 1 1 

+ (» V V Pa,(Pbk ̂  "a. - \ I * 

+ (a %a)3 (b - p,̂ ) + (a (b p̂ (p̂  ̂- p̂ )̂)+ 

+ n̂ -̂ {a (b "b'̂ Pb (Pfc Ï - P Z p̂  ) + 
^ ^ J J ^ J J 

+ (a TT̂ Xb TT̂ ) p̂  (p Z P̂  - P. ZPL ) + 
2 *ki *1 \i 'tu' 
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4. (a (b 1 \ i "'•i' 

+ Ca ir^Xb p CÏ Pj )(P Z Pt - Pu E P,,) + 
X, J ] K i i ki 1 

+ (» (b p̂ (̂E Pay(\ I  - fb̂  I  Pa/ + 

+ (a T̂ Xb p (E p̂  )(p I p - p E p̂  ) + 
Joj J ki 1 Ki 1 

+ (a (b 1^)2 P,^(Z Py/CP^ : Pb^ - Pb^ : Pa/ + 

+ (a ,,)(b Pb <Pa^ J Pb, - % ̂  Pa.' + 
X, K i 1 k 1 X 

+ (a .^)(b Pb^,(Pa% - Pb/ + e» V^Pb^'Pa^ " Pb/'' 

(5.19) 

It is important to note here that cov(r̂ , r̂ ) for k<&, arid k, 2 = 1, 

2, ..., N, is a symmetric function for values a and b. It means that 

cov(r̂ , r̂ ) can be written as 

covCrĵ , r̂ ) = f(n̂ , p̂ , V^) = 

f(n̂ , P̂ . n̂ , 1T̂ , Pg). 

When the value groups of a and b have the same life distribution, i.e.. 

P = p, = p. for all. i. 
»i '•i  ̂
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then, it is easily observed that covCtĵ j r̂ ) = 0. 

5. Derivation of large-sample variance of r̂  

The variance of the retirement ratio for each age interval can be 

computed by the following formula. For k = 2, (.5.16) gives 

for i, j = 1, 2, ..., k-1. 

Covariance and variance of £'s in the square bracket of (5.20) can be 

computed by formulas (5.7) and (5.8), respectively. 

The substitution of X., X̂ 's, variances and covariance of e's in­

to (5.20) yields 

var(r̂ ) = (X - Z X̂ ) ̂  [ ( X  - E X.)̂  var(e, ) + 
i  ̂

+ 2X̂ (X - Z X̂ ) Z cov(Ê , £̂ ) + 

+ X,̂ (Z var(e.) + Z E cov(.e., £.))] 
 ̂i  ̂ i5«j J 

(5.20) 
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+ 2(.a Ïï p + b TT P ) Ca TT + b TT - a TT Z p - b ir s P )X 
bbfc ® " * i *1 

Ca TT (b TT, 

â \ i " % \ i 

2 (a (b 

* ' "•> 'V i \ " i 'b, %r 

for 1, j = 1, 2, ..., k-1. 

The multiplication of the terms in the numerator of (5.21) gives 

var(r, ) = (a n +bïï, - air Zp -bir, Zp, ))̂ x 
k a b a . ̂ a. b . ̂ b. 

1  1  i l  

X + 2(a ir̂ )' (b ,̂ + 

+ (a (b Pâ  \ -

- 2(a Pâ  \ I  \  -  V' (" "b' \  \ I  Pb. • 

- 2(a TT ) (b ir ) p q Z p - 2(a ir ) (b tt ) 'p. 9,, % 9% + 
 ̂ \ i î  ̂ G *k i î 

+ (a P_ q_ ZZ P_ P_ + (a n )2 (b TT )^p q Z Zp p + 
 ̂ \ \ ± 2 ± 2 ®k \ i j ''i "j 

+ 2(a n )3 (b ÏÏ ) P q Z Z p p -
 ̂ b *k *k i j &i °i 
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- 2Ca TT p 2 z p _ 2(a tt (b p, ^ Z p + 

+ 2<a ./ Z Z + 2Ca (b P^' Z | Pb." 

- 2(a -nf (b Y p̂  p̂  ̂Z P,̂  - 2U (b %)̂ P,̂ Pb̂  Z P̂ +̂ 

+ V' (" V % \ I . "̂ 3 " 

+ 2(a (b IT̂ ) p̂  P̂  ̂Z Z P̂  ̂Pi, + 

+ (- ' /  \  I  \  v' (" "b' % \ I  \  \  * 

+(> v' Pbj : % \ - %' ̂  \ " 

+ 2(a \)̂  <b V "aj. \ ijj 

- (a •"/ (b p̂ J ̂  Pa. Pa,' + 

+ v' (bv'pt S +2(- V" V'Pb.v̂ » V̂ Pb, % -
K. K If If k k k "k 

- 2(a 1:/ (b Pb̂ \i \ ' %'\ I'^i' 

2(a wp(b V'Pb̂ \ 5 \ - i \ ̂ 
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+ (a •,/ (b Pb V J J \ S. J Pb, h.* 
k k i j i j  k k l j i j  

+ 2(a TT̂ Xb Pb % = ! \ Pb. -
K. K 1 3 i J 

- 2(a (b TT^)^ P],^ Ï Pj,^ - 2U \)(b ir^)^ p^ Ï p^^ + 

+ 2(a (b Ŷ Pâ \ ̂ j\S* 

+ 2u \)(b Pb̂  11 Pbj Pbj -

- 2(. ^(b p^^2 Z - 2(b Y' PbJ I Pb^ + 

+ 2(a it^Xb Pb^^ : : Pb^ P.j +2"' V'' Pb^^ J = Pb. %. + 

+ (a (b 1,^)2 p^2 E Py^ 1b^ + 2(a ir^Xb "b'^Pa^I'bJ "b^ 

+ <•' v'' Pb/ ^ "b. "b. - "f <" v' Pa,^ ?/ Pb. Pb. -
k i l l  f c  I f ]  1  J  

- 2Ca T^)(b p p. ! Ï p Pb -(b 1^)% 2 J J p^ )]. 
K  k  I T ]  ± 3  k  i f 3  1  3  

(5.22) 

Again, with considerable simplification, (5.22) can be written as 

var(r, ) = (a7r + b7r -a'ir Ep - b n, Z p, ) x 
k a b a . ̂ a. b . b, 

il 1 i 
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X [n ^((a Ti (p q -2p Z p +p ^ Zp +p Zip P ) + 

+ (a ir ) (b TT )(2p q - 2p Z p - 2p Z p + 
 ̂ \ \ \ i \ i "i 

' \ • 'a, + JI ' 

" V' V' \ - \ I \ +  ̂\ + 

+ 2(a TT ) (b TT ) p (p Z p - p Z P ) + 
 ̂ \ \ i \ i ®i 

+ 2(a TT (b TT p (p Z p - p Z P ) + 
 ̂ ° ®k \ i ''i °k i 

+ (a TT (b TT p (Z p )(p Z p - p Z P ) + 

 ̂  ̂  ̂j i \ i 

+ (a TT (b TT p (Z p )(p Z p - p Z P )) + 
®  ̂ i  ̂j ""j k̂ j 

+ nj_-\(b 1,̂ )'' (p , - 2p Z p + p. ̂  Ï Pb. + 
k  k  k i i  k i x  

' \ 1Î  '  

+ (a 71 )(b l̂ ) (2p q - 2p Zp - 2p E p̂  + 
k k  k i i  k i i  

' \ Î 'b, ' '"b, J I Pa, »b/ + 
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+ p E Z p p ) + 
\ i j H 

+ 2(a TT̂ Xb Pt̂  (Pb̂  I - Pâ  I Pb;) + 

+ 2(a (b Pb^(Pb^ I  Paj -  Pa^ ^ *  

+ (a (b Pa^(: Pb^)(Pb^ I P^j - Pa^ = 'b.' + 

+ (a 77 )̂  (b TT )̂  p (S p )(p Zp -p Zp ))]. (5.23) 
 ̂ \ j \ i ""i i 

Of special interest here is the case in which all value groups die 

according to the same mortality characteristic, i.e., 

p = p, = p. for all i. 
®i "i  ̂

Then, equation (5.23) can be simplified; 

var(r̂ ) = ((a ir̂  + b tTj )̂(1 - Z P̂ ))~̂  x 

X TT^)'^ (p^ -2p^ S Î S î p^ p^) + 

+ (a it̂ )̂  (b \)(2p̂  - 2pj, Z P; - 2pĵ  Z P; + 
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+ 2p̂ 2 Z + 2p̂  Z Z p. p.) + 

+ Ca TT̂ ) (b TT̂ ) (p̂  - 2Pk Z Pi + Pk % Pi + Pk % Z Pi Pj) + 

+ n̂ "̂ ((b (Pk ̂ k - 2Pk I  Pi + Pk̂  I  Pi + Pk I  J Pi Pj) + 

+ (a TT̂ Xb (2Pk \ - 2Pk ̂  Pi - 2Pk J Pi + 2p/ Z p. + 
11 1 

+ 2Pk I ^ Pi Pj) + (a (Pk % - ^Pk ^ Pi + 

+ Pk̂  % P, + Pu Z Z P. p.)]. (5.24) 
i ^ i i K i j i J  

Equation (5.24) can be further simplified to become 

var(r̂ ) = (a ïï̂  + b Tr̂ )"̂  x 

X [A "̂ ((a IT )̂  + 2(a IT )̂  (b ir ) + (a N )̂  (b IT )^) + 
A  A  A  D  3 D  

+ n̂ "\(b TT̂ )̂  + 2(a Tr̂ )(b tt̂ )̂  + (b tt̂ )̂  (a tt̂ )̂ )] 

J:k-«k') 
k-l 

(1 - Z p ) 
i=l  ̂

2 

(a + b (nj\a V̂ +V̂ '" V̂ ' 

(1 - Z p ) 
i=l ^ 
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where • (5.26) 

(1 - 2 P J 
1=1 1 

This is known as the population (true) retirement ratios for the k̂  ̂

age interval. It is of interest that the variance of r̂ /s is increasing 

in for 0 < £ 0.5 and decreasing for 0.5 < R̂ .< 1. 

B. The Case of Several Value .Categories 

The model for multi-value category is essentially an extension of 

the model for two-value classes. When a property group is classified 

into more than two-value groups, it becomes a model for multi-values. 

The practical example of this model may be thought of as property groups 

consisting of several vintages that were installed in successive years. 

The younger vintages of similar property may have different values 

(costs) than the older ones. Inflation, technological change, etc., 

may be responsible for the units of similar property having different 

values. 

1. Derivation of observed retirement ratios 

In a manner similar to that used in (5.1), the retirement ratios 

for the k'̂  age interval can be written as 

\ = n— »•"> 
Z a n - Z Z n 
s=l ® ŝ i=l 8=1 %i 

and as before, (5.27) can be expressed as 
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Z a ir p 
s a a, 

— • (5.28) 
Z a T T  -  Z  Z  a  T T  p  
s = s 1 8 * *S *8i 

In terms of X and E^, (5.28) can be written exactly as C5.3). 

Hence, r^ can be approximated by linear order terms, i.e.. 

4»̂  

2. Derivation of large-sample covariance of r̂  and r̂  

It follows from (5.29) that 

and 

a - A°&) 

Therefore, the covariance of and r̂  can be exactly written as 

(5.16), i.e., 

cov(r, , r.) = (\ (X x 
K X, i 1 j J 

X [(X - E X̂ )(X - E Xj) cov(Ê , ê ) + 

J 

+  X . ( X  -  E  X.)(var(E.) + E  cov(e, , e j )  + 
Jl J 1 k ĵ k  ̂: 
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+ Â (X - Z Aj)(Z cov(ê ,e ̂ )) 

+ A, Ap(Z var(e ) + Z Z cov(e., e.))] . (5.30) 
ic Ji i 1 13 

And, the covariance and variance of e's of (5.30) can be evaluated by 

(5.7) and (5.8), respectively. The substitution of A, Â 's, variances 

and covariances of Ê ŝ into (5.30), gives the covariance of r̂  and r̂  

as 

cov(r^, rjj) = 

=  ( Z  a  F  - Z Z a l T  p  )  ( Z a î r  -  Z  Z  a  T T  p  )  x  
S G *s i r ^ ^r ^ri u * *u j v ^ ^v ^vj 

. I-(I â  - Z E a, \ \ - I Ï a„ . 

"a 

S 

"a "a 

- Z Z a TT p ) (Z — p q - Z Z — X 
i V  ̂ v̂ %i s "â  %k ®sk jfk â̂  

* Pa . Pa > \ \ Pa \ ' Ç % *v "a Pa ? " 
sk S. r r o rk u u j v v vj 

3' 

"a >' 
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"a \ 
* (Z Z _ * P, % - Z z z — P^ )] (5. 
is a si si i?̂ j s n si sj 

s a 
s 

After the multiplication of the terms in the numerator of (5.31) 

the covariance of r̂  and can be expressed as 

cov(r̂ , r̂ ) = 

= S \  ̂S \ « % % - f J % % 

M- I z z „ \ )(a. 'a ) Pa . , + 
S r u a r u sk s£ 

s 

(% "a )' 

S 

"a 

I s : :  V  V  'sk 'v " 

(% \/ 
-  Z  Z  E  Z  Z  ( a 7 r ) ( a ï ï ) p  p  p  p  +  

i j s V w V a, w 

<S "a 

%)(%%) 
s 

\ 
• " : : V â,, Pâ , ̂a,, " 
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"a 

jVk s r u V ''V ^ 

(% \ 
+  Z  r  E  Z  Z  Z  —  • ( a T r ) ( a T r ) p  p  p  p  -
i ĵ k s r V r V â  â  ̂ â  ̂ â . â .̂ 

(% \ )' 

• L" ' V 'Sk \i' 

(% "a )' 

"'̂ '5 's''"- V "-si's. 'Si '\j ' 

"a >' 
+ Z Z Z Z — (a IT )(a "T ) p q p p + 
i s r u "a  ̂ r̂ " û %± %i ®rk 

s 

(% \ )' 
+ Z Z Z Z Z Z T — (a "T ) (a TT ) p p p p ] . 
ifj j s r V "â  ' ®r % ®si %j r̂k *v& 

(5.32) 

After considerable simplification, expression (5.32) can be presented as 

cov(r^, r^) = 

(Z a^ a^ CI \ ' 

"a '' 

'  '^ r u  ' " r  % ) ( %  \ )  - , V  +  
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"  i  =  " V "  V  " s i ' S k  '  
S 

(% \ >' 

(S \ "a ) Pa , (Pa . Pa . "Pa . P, +  Z  E  Z  2  :  
j s r u ''r " "u "sk °rj °r& "̂ sj 

(*s *a )' 

' L" u~T̂  V»si \k 
s 

(% \ )' 

' '"Sk 'V '̂ rj - \k 'Si " 

"a 

V ' - V S /  

X (P- Pa Pa - Pn Pa P* )]' (5-33) 
sk rSi vi rk v& si 

If M distinct value groups have the same life distribution, i.e., 

p, = p for all s, r, and i, then it could be easily observed that 
Sgi a-ri 

cov(r̂ , r̂ ) = 0. 

3. Derivation of large-sample variance of r̂  

The variance of retirement ratios within each interval can be com­

puted by the following formula. 
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varCr^) = (A - E [(X - Z var(E^) + 

+ 2Â (X - E Â ) Z cov(Ê , ê ) + 

+ 1 ̂ (Z yarCe.) + E Z cov(e , e ))] . (5.34) 
ic  ̂ 1 i j 

The covariance and variance of can be evaluated by (5.7) and (5.8), 

respectively. A substitution of X, X̂ 's, covariance and variance of 

into (5.34) permits the variance of r̂  to be expressed as 

var(r, ) = (Ea w -EZa w p ) ^ x 
u ° ^ iv ' % 

2 
X [(: a, -zzs (: -

s . 

- s % 'V: \ IT" % ' 

"a/ 2 

s 

"a/ <% "a , 

for i,j =1, 2, ...» k-1 

s, r, u, V = 1, 2, ..., M. (5.35) 
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Multiplication of the terms in the numerator of (5.35) yields 

var(r, ) = (Z a w -ZZair p ) 
s s 1 ; S S; 

-4 

"a ' 
X [Z ï r —_-2_ )(â  ) P, 4, 

S u V a u V sk sk 

"a ' 
- 2 Z Z Z I —  ( a 7 r ) ( a i r )p q p + 

i s r u \  ̂ ®sk %k *ri 

(a_ îT ) 
s a 

+ z z z z z 
I j s r .  V" V 'a,. 

<̂ s \ ' 
- 2 Z Z Z Z — (a n )(a n ) p p p + 

i s r u "a f r̂ " *u ®sk ®rk 
s 

"a >• 

+ 2 Z Z Z Z Z 
i j s r .  

(% "a ' 

+ Z Z Z Z — (a ir )(a ir ) p p p q 
i s r u "a  ̂ " ®u r̂k ûk Si %i 

s 

>•  

- Z Z Z Z Z s 
î îj s r u \ ' V " " V '*rk '*uk '%± '*sj 

(a n )(a n ) p p p ]• 

(5.36) 

After considerable simplification, the variance of r̂  can be expressed 

as 
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var(r, ) = (Z a n -ZEair p )~^ ^ 
^ s » *S 1 s s *3 *si 

X [Z Z Z n "l(A IR (a IT )(a ïï ) p q 
s u V ®s ® s " ^ % ^sk %k 

- 2 Z Z Z Z n ^(a ir (a ir )(a ir ) p p + 
i s r u ® %k ®ri 

+ Z Z Z Z n ^(a IT (a ir )(a IT ) p p p + 
i s r u ®s ® ^ " ®u ®rk ®uk %i 

+ Z Z Z Z Z n ^(a TT (a IT )(a ir ) p p p + 
i j s r w ® ^ \ ®sk ®ri \j 

+ 2 Z Z Z Z n "^(a n (a TT )(a ÏÏ ) x 
i s r u *s ^ r " *u 

' \i • "sk ' 

+ Z Z Z Z Z n ~̂ (a TT (a TT )(a TT ) X 
i j s r w ^ ^ ^ % 

" fa., P» .(Pa , Pa . ' 'a , Pa + 
sk wj rk si sk ''ri 

+ Z Z Z Z Z n "l(a TT (a TT )(a TT ) x 
i j s r w ®s ® ^ ^ % 

 ̂P. P_ (P- P- -P. P_ )]' (5.37) 
rk si sk wj wk sj 

for i, j = 1, 2, ..., k-1; 

s, r, u, V, w = 1, 2, ..., M. 
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Of special interest, is the case in which all value-groups are sub­

ject to the same mortality characteristic, 

p, = p., = p. for all s, r and i. 
®ri  ̂

Then, (5.37) can be simplified to: 

var(r,) = ((Z a TT )(1 - Z P,))"* * 
s ® ®s i  ̂

' 'Î u V V' % - 2Pk I Pi + 

(5.38) 

Equation (5.38) can be written in a compact form; that is 

k-1 
(1 - I p.) 

i=l 

where 

For M = 2 equation (5.39) gives 

k-1 
(1 - E Pj_) 

i=l 
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The above equation is essentially the same as equation (5.25). 

C. The Case of a Single Value Category 

1. Expression of observed retirement ratios 

The model for the single value category is essentially equivalent 

to model based on item counts. Again, the assumption is made that there 

is only a single vintage group which is composed of n large units. 

The observed retirement ratios for each age interval can be derived 

from (5.1) by putting the restrictions 

Note the index '1' is dropped since there is only one vintage group. 

a = 1 and b = 0: 

 ̂ k-1 
(5.40) 

n - Z n. 
i=l  ̂

Further, r̂  can be approximated by the linear term expression; 

k (X -
(5.41) 

where 
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2. Derivation of large-sample covariance of r̂  and 

As in the use of (5.16), estimates of covariance of retirement ratios 

can be computed by 

-2 ^ , -2 cov(r , r.) = (1 - I p ) (1 - Z p ) x 
 ̂  ̂ • i i j j 

X [-(1 - Z p )(1 - Z p ) - p. (1 - Z p.) Z p, p, + 
i  ̂  j J  ®  j ^ i ^  

+ Pod  -  Z p ) - p,(i - Z p ) z + 
Ji i 1 n a i 1 ĵ k n 

q. Pi P. 
+ Pk PA - Pk P* (5-42) 

After further simplification, (5.42) can be written as 

covCr , r ) - n'̂ 'Cl - z p )"̂  (1 - £ p * 
n «, 1 1 J J 

" '-"k h "t : Pj - Pk h : I "i Pj 

- Pk : Pi + Pk c Ç Pi Pj + Pk P* - Pk̂  Pi -

- Pk P% : Pi + Pk̂  h  i n *  Pk h  I  ? Pi Pj " . 

Pk P* Ç Pj - Pk̂  P% Z Pi + Pk̂ P(+Pk'P;:Pi- Pk.Pj I 

Pk P« I I Pi Pj + Pk P% : Pi •J - 0. 
(5.43) 
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The above covariance of r̂  and r̂ ^̂  is literally zero. This is intuitively 

true since there is only one value group, hence, all units in the proper­

ty die according to the same mortality characteristic. 

3. Derivation of large-sample variance of r̂  

The variance of retirement ratio in the age interval can be 

evaluated as follows. As when formula (5.34) is used, the variance of 

r̂  can be written as 

var(p ) • cov(p. , p ) 
var(r ) = % + 2p Z ? + 

( 1 - 2  Ç r * i (1 - Z p.) 
i  ̂  ̂

Pk 
+ T (Z var(p ) + Z Z cov(p., p.)) • (5.44) 
(1 - Z p.)4 i  ̂ ifj \ J 

Variance and covariance of p's can be computed by (2.3) and (2.4), re­

spectively. 

A substitution of the variance-covariance of p's into (5.44), per­

mits the variance of r̂  to be presented by 

varCr ) - i - 2p ^ ?! + 
" (1 - E " (1 - r pj)-" 

p,/ ^ p,. q,. - p,.^ z z p. p. 
, k i -i -k y. -i 3 

(1 - Z p̂ ) 
 ̂ ). (5.45) 

After further simplification, (5.45) can be expressed as 
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var(r̂ ) 
1 
n 
(1 - E P,)' 

1 
(1- Z P.) 

• i 

\ i 
n(l - L p.) 

i 1 

(5.46) 

where 

is defined as in (5.26), 

The variance of retirement ratios may be computed by the other 

formula; 

N 
var(r ) = ̂   ̂ P d̂  - (Z d p )%) 

K- n j=l J J j J J 

where 

dj = for j = 1, 2, .. N. 

(5.47) 

(5.48) 

For details of the derivation of (5.47), see Fleiss (1982). 

Equation (5.40) in terms of p's may be written as 

rk = 
k-1 

1 - Z P, 
j=l 

r is then derived with respect to p. for j = 1, 2, .. N: 
 ̂ J 

ar. 

SP% (1 - Z PJ 
j  ̂
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9r, 

Bp. (1 - Z PJ' 
j  ̂

, for j = 1, 2, k-1 (5.49) 

3r, 
= 0 for j = k+1, k+2, N-

N 
I p. d. 

k-1 

I P. 
j=l J 3 4-1 J j=l J (1 - Z p.)" (1 - Z p.) 

j  ̂ j  ̂

= P -i  ̂

 ̂\(1 - z p.) (1 - I p.)2, 
j  ̂ j J 

(5.50) 

Upon the substitution of (5.49) and (5.50) into (5.47), the variance of 

r̂  can be written as 

var(r̂ ) = -

- 2 

Z p. + 
(1 - Z P )* j  ̂ (1 - Z p.)2 

j  ̂ j  ̂

-  2 )  
 ̂I (1 - E p.) (1 - Z P,)V 

4 J 4 J 

(5.51) 

After further simplification, (5.47) may be written as 

var(r̂ ) 
1 
n 
(1 - Z PJ 

j  ̂
(1 - Z p )• 

j J 

(5.52) 
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The substitution = p̂  for all j into (5.52) gives 

j  ̂ j : 

Thus, 

var{r̂ ) (5.53) 

n(l - Z p.) 
j=l J 

where is defined as in (5.26). 
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VI. A MODEL FOR THE JOINT DISCRETE DISTRIBUTION 

OF VINTAGE GROUP AND LIFE 

The model discussed in Chapter V is essentially derived from the 

single vintage. The classification by value is statistically sound. 

However, the value-category may not exist in the accounting practices 

of an industrial firm. What usually is available is the classification 

• by vintage. 

Consider now property groups which are composed of several vintage 

groups. Needless to say each vintage group was installed during differ­

ent years. It seems plausible that each vintage has a different life 

distribution. Management policy, economic conditions, inflation, tech­

nological breakthroughs, etc., all are responsible for each vintage hav­

ing different mortality characteristic. 

The assumption that all vintage groups have the same life distrib­

ution is usually made to simplify the analysis of data. It can be shown 

that under this assumption, the asymptotic covariances of the retirement 

ratios are zero, hence, weighted least square (or even least square) may 

be employed in fitting linear models to the retirement ratios. 

This chapter presents the derivations of the retirement ratios and 

the corresponding estimates of the covariances and variances for indus­

trial mortality data which depreciation engineers commonly use. It can 

be shown that with some modifications, the model in Chapter V remains 

applicable to these data. 
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Typical industrial mortality data can be cast by two-dimensional 

contingency table: 

Table 1. 

Year of Size of Age at retirement 
placing vintage 1 2 3 4 5 6 7 8 

1 
"l "ll "l2 "13 "14 "15 "16 "17 "18 

2 
"2 "21 "22 "23 "24 "25 "27 "27 

3 
"3 "31 "32 "33 "34 "35 "36 • " • 

4 
"4 "41 «42 "43 "44 "45 ••• 

5 
"5 "51 "52 "53 "54 • • • 

6 
"6 "61 "62 "63 *•• 

7 n? "71 "72 

8 
"8 "81 ••• 

The following definitions will be adopted: 

n.. denotes the number of item units from the î  ̂vintage 
retired during the age of interval j 

n. = Z n.. represents the original number of item units from 

^ 3 

the i*"̂  vintage group that are put in service at age zero 

p.. indicates the observed proportion of units from the î  ̂
vintage retired during the age interval 

p.. represents the true probability of a unit from the î  ̂
vintage retired during the age interval under what­
ever life distribution is assumed 

ni _th 
IT.. = : —: is the proportion of units from the i 

vintage to the total units from all vintages which were 
included in the study 
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0 

0 

A = I A, .  = Z Z n . p . 
j=l V i j " 

" ̂ "ij(: "ij' = : "ij = 1 

e indicates the last (most recent) year that is included 
in the study of retirement experience 

L denotes the width of the experience band̂  used in the 
study 

w represents index of the width of experience band used 
in the study, w = 1, 2, ... L 

A. Two-year Experience Band 

1. Derivation of observed retirement ratios 

To better understand the development of retirement ratios for 

mortality data from Table 1, consider a two-year experience band which 

begins with year six and ends at year seven. The placement band used 

in this case is years one through seven. 

With the definition of retirement ratio, 

The calendar years for which the retirement experience of the total 
inventory (units or dollars retired or survives) is observed is called 
the experience or observation band. 

The time period delimited by the year of installation is called the 
placement band. 
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= retirement ratio for the first year. 

the number of units retired during the first age interval 
the number of units surviving at the beginning 

of age interval one 
(6.1) 

Notationally, (6.1) can be written as 

°61 °71 

=6 + ''7 

6̂ 6̂1 + 7̂ 7̂1 

"6 + "7 ""e "6 + "7 *7 

With the definitions of ir's and p's, (6.2) can be expressed as 

'̂ l ~ ̂ 61 ̂61 7̂1 P7I 

(6 .2 )  

 ̂̂ 61̂ 61 " ̂61̂  •*" *71(971 " P71) 

+ ̂ 1 P61 + ̂ 1 P7I (*'3) 

In terms of and ê , r̂  can be rewritten as 

>^1 = ^61 + \l (G'4) 

Similarly, the retirement ratio in the second interval , 

 ̂ = °52 "** °62 

2 n̂  + ng - (n̂ i + n̂ )̂ 

When both numerator and denumerator of (6.5) are divided by n̂  + n̂ , it 

gives 
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°5 . "52 ̂  "5 "62 

 ̂ °5 6̂ °5 "5 "6 °6 , 

 ̂- ( —̂ . — + —̂ • ~) (6.6) 
"5 + "6 "̂5 + "6 "5 "5 + "6 "6 / 

Again, with the definitions of IT 'S  and p's, (6.6) can be written as 

r. = • (6.7) 

1 - ("̂ 52 P51 + •'̂ 62 6̂1̂  

In terms of e's and A's, (6.7) can be expressed as 

5̂2 ̂  ̂52 

Similarly, r̂  can be expressed as 

r̂  = ; (6.9) 

1 - (%43 P41 + "̂ 53 P51 + \3 P42 "*• 5̂3 ̂ 52̂  

or 

4̂3 4̂3 
3̂ = 1 - (A41 + + ̂ 41 + E42) ' 

It is important to note that X's and e's keep changing from one interval 

to the next. 

The form of r's resembles the form of r̂  in (5.3), hence, the linear 

Taylor approximation remains valid. However, the covariance formula is 

slightly changed due to the change in values of X's and e's. 
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2. Derivation of large-sample covarlance of r̂  and rg 

The covarlance of r̂  and Zg can be derived as follows. As in C5»5), 

r̂  and r̂  can be expressed, respectively, as 

'l ° + ̂61 

and 

5̂2—+ + >52 - ̂ 51 
2 (1 - (1 - Xgi) (1 _ 

With the usual definition .of covarlance. 

cov(r̂ , rg) =7ÏT̂  <=«̂ (̂ 52' ̂ 61̂  + ( 1 - ^ 6 1 ^  

(1 - X51 
2̂ [(1 - ̂ 51̂  covCEgg, Egi) 

+ covCEĝ , Eĝ )] . (6.11) 

According to Lemma 1 (Chiang, 1960a), the number of units retired 

from the î  ̂vintage group is distributed as multinomial with parameters 

n. and p.. for j = 1, 2, N. Hence, it follows from (2.3) and (2.4) 
1 13 

that 

îi 1̂1 
var(p,,) = (6.12) 

ij 

and 

Pi4 ̂ ii' 
- - " - (6.13) cov(Pij, p_,) — , for jfj'. 



www.manaraa.com

93 

The covariance terms in the square bracket of (6.11) are computed as 

follows ; 

COVCEjj, Ejj) = CO'CTJJCpjj - Pjj) + "62̂ 6̂2 " ̂62̂ ' 

= co,(T̂ i(P6i - P6i). \2<P62 - ̂ 62» 

° \l "62 "'"'•hv h2> 

Equation (6.13) gives 

c°T^P61' h2> ^ 
o 

Therefore, 

c°v(E52, Egi) Pgi Pgz • 

6̂1 ̂ 62 

° "''"sa'Psi - fjl' + "62̂ 61 - Psi)' 

" Pel) •*• " ''71". 

=ov(ir6i<P(;i - P51). *62(Pgi - Pji» 

"61 "62™<P6l' 
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Equation (6.12) gives 

var(p,J = 
6̂1 

61' 6̂ 

Thus, 

*̂ 62 
covCEji, £jj) — Pjj qgj . (6.15) 

The substitution of (6.14) and (.6.15) into C6.ll) yields 

covfaj,. tj) - Cl - »52 P51 - \2 

Pc-! Pcp 
X [(1 - ̂ 22 P51 " •̂ 62 P61?("̂ 61 "̂ 62 E ^ 

+ (%52 P52 6̂2 ̂ 62̂ ^̂ 61 ̂ 62 n, ' (6.16) 
6 

After the multiplication of the terms in the numerator, (6.16) can be 

written as 

cov(r̂ , r̂ ) . (1 - Pji -

 ̂t- ̂ 1 %2 ̂ -52 ̂1 "62 
5 

0 6 

-61 
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Itader the condition that all vintage groups have the same life 

distribution, 

Pik = P̂ » all i and k: 

cov(.r̂ , r̂ ) = 

2 
-1 2̂ P? 

(.1 - Pĵ ) [- 6̂2 5̂2 \l "̂ 62 ng 

+ "61 * "52 "61 "62 ̂ 4  ̂+ "61 "62  ̂̂ 4  ̂' ' 

(6.18) 

With the substitution of = 1 - p̂  into (6.18) and after simplifica­

tion, (6.18) can be expressed as 

cov(ri> 1̂ 2̂  " ngd̂ - p̂ ) \l ̂62 5̂2 ̂ 61 ̂ 62 \l ̂2 ̂ 

(.6.19) 

But 

-"61 "62 + "61 "62("52 + "62> ' 

-"61 "62 + "61 "62(1) = 0 . 

Hence, cov(r̂ , = 0 

B. Three-year Experience Band 

1. Derivation of observed retirement ratios 

Suppose now the band width of experience is extended to three years, 

using years seven, six and five. 
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Referring to contingency table (Table 1), the retirement ratio at 

the first age interval can be written as 

^ ^  ^  " 6  ° 6 1  ̂  °7 7̂1 

5̂ 6̂ '̂ S *5 *6 * ̂7 \ *5 *6 ̂  ̂7 °7 

5̂1 ̂ 51 t ̂61 ̂ 61 •*• "̂ 7̂1 P7I' 

In terms of A.'s and e's, (6.20) can be represented by 

r̂  — 5̂1 ̂  ̂51 (6.21) 

where 

5̂1 " "̂ 51 ̂ 51 6̂1 ̂ 61 •'• '̂ 71 ̂ 71 

and 

5̂1 5̂1̂ 5̂1 " P51) 6̂1̂ 6̂1 " ̂61̂  "*• 7̂1̂ 7̂1 " ̂71̂  

The retirement ratio for the second interval can be written as 

 ̂ %2 "52 + "62 , 
2 n̂  + ng + n̂  - (n̂  ̂+ n̂  ̂+ n̂ )̂ 

If the numerator and'denumerator of (6.22) are now divided by 

(n̂  + n̂  + n̂ ) then 
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^ ^  ^  ° 5  ,  ^  " 6  .  " 6 2  

*4 + "5 + *6 04 + *5 + "6 "5 "4 + "5 + °6 6̂ 

1 / "4  ̂"41 I "5 "51̂  "6 "61\ 
\n̂  + n̂  + n̂  + n̂  n̂  + n̂  + n̂  / 

(6.23) 

In terms of ir's and p's, (6.23) can be expressed as 

\2 P42 5̂2 P52 + ̂ 62 ̂ 62 
J- = • (6.24) 

 ̂" (̂ 42 P41 5̂2 ̂ 51 6̂2 ̂ 61̂  

With the definition of E'S and X's, (6.24) can be written as 

'2 = TT%+%T • 

The form of r̂  and r̂  remains the s aime as the form of r̂  of (5.3). 

Therefore, the first order Taylor approximation to r̂ 's still holds. 

Variance and covariance formulas for r̂  are slightly changed because 

of changes in values of E'S and X's from one age interval to the next. 

This will become clear after evaluating covariance of r̂  ̂and T2 in the 

next section. 

2. Derivation of large-sample covariance of r̂  and rg 

The basic formula for computing covariance of r̂  and r̂  is 

cov(r., r.) = 5" [ (A - X ) cov(e , e.) + X„ var(e )]. 
 ̂ X(X - X.)  ̂ 1 ^ ^ 1 

-  ,  ( 6 . 2 6 )  

Since X̂  and change in value from the first to second age intervals, 

formula (6.26) is also changed to become 
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covCr̂ , rp = 2 [d " cov(Eĝ , 
(1 -

+ ̂ 42 covfCsi' =41)]' (6.27) 

Covariance terms of e in the square bracket in (6.27) are estimated as 

follows. 

cov(£5i. E42) = cov[Trĝ (gĝ  -

"*• *71(971 " P71)' *42(942 " P42) •*• *52(952 " P52) •*• *62(962 "̂ 62̂  ̂

= cov(nĝ (pĝ  - P51), ̂ 52(952 ~ 952)) 

+ cov(Trĝ (pĝ  - Pgi, ̂ 62(962 " 962̂ > 

~ *51 *52 ̂ °̂ P̂5i» P52) *61 *62 ̂ ovCPgi, 962̂ * (6.28) 

But 

covfPsi, 252) = -

and 

cov(p,,, p-„) = -
61' ̂ 62' n, 

6 

Hence, 

*51 *52 *61 cov(e,i, e*,) = p,̂  _ _j%_ 62 

5 6 
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COvCegi, - Pĝ ) + Wĝ CPgi - Pĝ ) + ̂ iCPyi-Pyi). 

V̂ 4̂1 " P41) "*" 5̂2̂ 5̂1 " P51) \2^^61 " Psî ] 

- covEiTĝ Cpĝ  - P51)» "̂ 52̂ 5̂1 ~ P51)] 

cov[7rgi(̂ 61 - P61)' \2^hl - P61)] 

= 77̂ 2 var(p3̂ ) + var(pĝ ) 

But 

and 

P61 961 
var(p,,) = 

6r n. 

Thus, 

P5I 9c2 9̂ 1 Pci 
covCe^j^, ^41) ^ '*' ^51 ^52 Z "*• \l V Z • 

5 6 

The substitution of X's, (6.29) and (6.30) into équation (6.27) gives 

co,(r̂ . r̂ ) = (1 - ir̂ 2 P41 " "52 ̂ 51 " "62 

 ̂[(1 - P4I " ̂ 52 P5I ' ̂62 Pel) 

" <- "51 '52 ̂  \2 
5 6 • 
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+ ("42 + V "52+̂ 2 '62»('51 ̂ 52 "62 
J 6 

(6.31) 

The multiplication of the terms in the numerator of (6.31) yields; 

.-1 cov(r̂ , rj) = (1 - ŵ 2 17̂  ̂- p̂ p' 

 ̂I- "31 ̂ 2 ̂  - "ex \2 ̂  
o 

+ "42 "51 "52 "n̂  + "«2 "61 "62 "" "n̂  "" 
3 O 

+ "52̂  "51 ̂  + "52 "61 "62 
J 6 

-51 "51 "62 ̂ ^̂ -61 "62̂  ̂

-.2 "51 "52 -.2 "61 "62 

-51 "3/̂ ^̂ -52 "61 "62 
J D 

+ "51 '32 "62 "n" + "61 "62' 'n^ l-

Under the condition that all vintage groups are subject to the same 

mortality characteristic, 

îk ̂  all possible values of i and k. 
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covCr̂ , rg) - (1 -

Pi Pg Pi Po 
X [- Wgi TTgg - "̂ 61 \2 ng 

2 2 
Pi P2 - Pi Pg 

+ 7r^2 ^51 T^52 •*• \2 \l ̂62 

2 Pi 2̂ 1̂ 2̂ 
""" 5̂2 5̂1 ng ••" 5̂2 \l ̂62 

_ 2 „ 2 
?! P2 2 ̂ 1 2̂ 

+ TT̂ i 77̂ 2 ̂ 62 ••" \l \2 ng 

Pj. 9i P2 Pi 1i P2 

"*• \2 5̂1 ̂ 52  ̂ \2 ̂61 ̂ 62 

+ ̂ 1 %52̂  + \2 "61 "62 ''̂  2 
J 0 

Pi 1̂ Pn 2 ̂ 1 *̂ 1 ̂ 2 
+ TT̂ i tt̂ 2 ̂ 62 6̂1 V (*'̂ 3) 

With the substitution of = 1 - p.̂  into (6.33) and after further 

simplification, (6.33) can be written as 

cov(r̂ , rg) = 

1̂̂ 2 r -1, 2 
(1 - Pi) "̂ 51 "̂ 52 "•• '̂ 42 '̂ 51 "̂ 52 '̂ 51 '̂ 52 '̂ 51 '̂ 52 ̂ 62̂  

••" '^e '"'61 ^62 '"'42 '^61 '"'62 '"'52 ^61 '"62 "*" ^61 '""62 ^ ^ ' 
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But 

" '̂ 51 '̂ 52 "̂ 51 ̂ 52 ̂\2 """ '̂ 52 6̂2̂  

- - 7r̂ 2 + '̂ 51 "̂ 52 *  ̂~ ° 

Similarly, 

" "ei "62 * "61 "62'"42 •*• "52 * "62' 

' - "61 "6 + "61 "62 ' 1 = ° 

Hence, 

cov(r̂ , r̂ ) = 0 

Thus, for the three-year experience band covariance of r̂  and r̂  remains 

asymptotically zero. 

C. 1-year Experience Band Based on Item Counts 

1. Derivation of observed retirement ratios 

Analogously, for the case of data aggregated over vintage groups, 

where (e) represents the most recent vintage year, and (L) represents 

the experience band used in the study, the retirement ratios for the 

age interval can be written as 

.-̂ e-w-k+2,k 
°° k-l L 

%-.-k+2,j 
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When the original data recorded in terms of units of dollars, 

r̂  may be further represented as 

L 

ê-w-k+2 ̂ e-w-k+2,k 

1 k-1 L (6.35) 

ê-w-k+2 °e-w-k+2 ê-w-k+2 "e-w-k+2,i 

It is worth noting here that n , , and a , , _ may not be avail-
° e-w-k+2,k e-w-k+2 •' 

able. Only the lump sums in dollars may be known. For the purpose of 

this study assume that each vintage size, n̂  w-k+2' known. To illus­

trate how formula (6.34) works, suppose the most recent vintage year, 

e = 7, and let L = 2 and k = 3. Then, 

.  - •T;"— 

Â "7—3+^ " ih 

If each term in the numerator and denumerator of (6.36) is written 

out, then 

J.  ̂ "53 "43 
3 n̂  + n̂  - (n̂  ̂+ n̂  ̂+ n̂  ̂+ 

L 
Both numerator and denumerator of (6.34) are now divided by Z n , 

e-w-k+2 w=l 
which gives 



www.manaraa.com

104 

J. "e-w-k+2 °e-w-k+2.k 

ê-w-k+z) ê-w-k+2 
rĵ  =  ̂ (6.37) 

1 « 2> J e-w-k+2 e-w-k+2,1 

i w ê-w-k+2) "e-w-k+2 
w 

If the definitions of fî's and p's are employed, then (6.37) can be 

written as 

V A 
ê-w-k+2,k "e-w-k+2,k 

= ; . • (6.38) 

1  ̂̂  ̂ e-w-k+2,k ̂ e-w-k+2,i 
1 w ' • 

In terms of ̂ 's and '̂s, (6.38) may be represented as 

A  , > , . + £  
e-L~k+2,k 

 ̂̂ e-L-k+2, i  ̂"̂ e-L—k+2, i 

where 

ê-L-k+2,i  ̂̂e-w-k+2,k ̂ e-w-k+2,i 

fk = 1 _ zTT:!!. 

e-L-k+2,i  ̂̂e-w-k+2,k̂ ê-w-k+2,i ̂ e-w-k+2,1̂  

for i = 1, 2, ..., k-1; 

w = 1, 2, ..., L. 

As before, r̂  can be approximated by linear order terms of the Taylor 

expansion: 
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ê-L-k+2,k '̂ e-L-k+2,k 

k '̂ e-L-k+Z, k X̂ _ , k 

' k+2.k (1 

where 

k-1 

 ̂e—L-k+2,k . . e-L—k+2,i 
1=1 ' 

k-1 

°̂e-L-k+2,k "̂ f̂ VL-k+2,i 

and , 

(jj e-L-k+2,k 

e-L-k+2,k (1 - ̂ %_L_u+2,k) 

2. Derivation of large-sample covariance of r̂  and rg 

Asymptotic covariance of retirement ratios in the first and second 

intervals can be derived as follows. 

For k = 1 and k = 2, (6.40) gives 

1̂ \-L+l,l ê-L+1,1 

and 

° " <1 -til) " (1 -
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By the definition of covariance; 

cov(r̂ , r̂ ) . CI -

" """'̂ e-L+l.l' ̂ e-L,2' 

+ ̂e-L,2 "''S-I,,!' Vl+1,x" (*-42) 

Before the computation of the covariances of s's in (6.42) a few useful 

formulas are derived: 

<=ov(̂ e-L-k+2,i' ̂ e-L-il+2 ,j ̂ 

cov[S ,k̂ ê-u-k+2,i ê-u-k+2,î ' 
u 

 ̂e—W-S.+2 w—Ji+2, j ê—w-ii+2, j ̂ ̂ 

 ̂'=°̂ (\_w-2+2,k(Pe-w-&+2,i " ' 

ê-w-S,+2, jl̂ ê-w-2.+2, j ê-w-)l+2, j ̂ ̂ 

w 'k(Pe-u-k+2,i " Pe-u-k+2,î ' 

ê-w-&+2,5, ̂̂ e-w-)l+2, j ê-w-Jl+2, j ̂ ̂ 
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L+k-Jl ̂  

'̂ e-w-Jl+Z \-w-ii+2,k ê-w-&+2̂ e-w-&+2,i ̂ e-w-£+2,j  ̂

= 0 for j - i 2 L. 

Thus, 

°̂̂ (%-L-k+2 ,i' ̂ e-L-m,ĵ  

L+k-Jl ̂  

"e-w-il+2 ̂ e-w-ji+w,k ̂ e-w-jl+2,̂ ê-w-&+2,i ̂ e-w-Jl+2,j (6.43) w=l 

It is important to note here that the covariance of terms which come 

from different vintage groups are zero. For i = j (6.43) becomes: 

'=°v(̂ e-L-k+2,i' ̂ e-L-5,+2,î  

L+k-£̂  

T̂°e-w-&+2 ̂ e-w-Jl+2,k ̂ e-w-£+2,5, ̂e-w-5,+2,i ̂ e-w-2+2,1 (6.44) 
w=l 

It is worth noting here that 

Vw-ll+2,k * Vw-M.H k ̂  ' 

and 

L 
2 TT • .0 • = 1 for all i. 

e-w-i+2,1 w=l 

Now, for k = 1, 2 = 2, i = 1 and j = 2, formula (6.43) provides: 

L-1 
-1 

cov(ee_L+î l» ê-L,2̂  %-w ̂e-w,l ̂ e-w,2 ̂ e-w,l ̂ e-w,2 

(6.45) 
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and for k = 1, & = 2, i = j = 1, (6.44) gives 

L-1 _I 

°̂̂ ^̂ e-L+l,l' ̂ e-L,l̂  %-w ̂ e-w,l ̂ e-w,2 ê-w,l ̂ -̂w,l 

(6.46) 

Upon substitution of X , X (6.45) and (6.46) into (6.42), 
G "If ) JL fi'̂ W y ̂  

cov(rĵ , Tg) = (1 - : Vw.l 
w 

[(1 - Z IT p ,)(- Z n~̂  TT IT p p ) 
w e-w,l e-w,l  ̂ e-w e-w,l e-w,2 e-w,l e-w,2 

 ̂ w ê-w,2 ̂ e-w,2̂  ê-w \-w,I \-w,2 ̂ e-w,l "̂ e-w,!̂  ̂ 

(6.47) 

After the multiplication of the terms in the numerator, (6.47) can be 

written as: 

eov(r̂ , r̂ ) - (1 - E T,̂ .„ P̂ .„ 
w ' ' 

X  [ -  Z  n  ̂  T T  - Ï Ï  „ p  , p  „  
 ̂ e-w e-w,l e-w,2 ̂ e-ŵ l e-w,2 

+  Z Z n ^ i T  _ T r  - I T  _  p  , p  , p  -
 ̂̂  e-w e-u,l e-w,l e-w,2 e-u,l e-u,l e-w,2 

+ ̂  ̂  '̂ e-w \-w,l \-w,2 ̂ e-u,2 ̂ e-w,l ̂ e-w,l ̂ e-u,2̂  " (6-̂ 8) U W J J > 5 J J 

If it is assumed that all vintage groups die according to the same mor­

tality characteristic, i.e.. 
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Pe-w,k " Pk " and k 

then cov(r̂ , r̂ ) is further simplified: 

cov(r̂ , r̂ ) = (1 - p̂ ) ̂  

* [- % *e-w \-w,l ̂e-w,2 ̂ 1 ̂ 2 
w 

—1 2 
+ E E n~ IT -IT -IT o Pi P-j 

e-w e-u,l e-w.l e-w,2 1 2 
u w 

u w ̂ e-w \-w,l \-w,2 \-u,w ̂ 1̂  ̂~ ̂ 1̂  ̂ 2̂  

Hence, 

cov(r̂ , r̂ ) 

(1 Pĵ ) [  ̂"e-w \-w,l ̂e-w,2 ̂ 1 ̂ 2  ̂̂  "e-w \-w,l 
w ' ' u w 

ê-w,2 ̂ e-u,2 ̂ 1 ̂ 2̂  

But, 

„b-u,2 -
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Therefore, 

cov(r̂ , r̂ ) = PgCl -

ê-w ̂ e-w,l ̂ e-w,2  ̂"e-w ̂ e-w,l \-w,2̂   ̂
w w ' 

3. Derivation of large-sample covariance of r̂  and r̂  

Asymptotic covariance of retirement ratios for the age intervals 

k and H, where k < & can be derived as follows. 

For k = k and k = 2 equation (6.40) respectively gives 

 ̂ ê-L-k+2,k ê-L-k+2.k 

k (.1-2 ̂e-L-k+2,î  ~ i ̂ e-L-k+2,î  

ê—L-k+2,k ê-L—k+2,î  
+ 

1 \-L-k+2,i) 

and 

A , „„ E 
r., = 

e-L-il+2, a e-L—&+2, H 

i (1 - Z \_L_2+2,j) ~ j ̂ e-L-2+2,ĵ  

ê-L-2+2̂ e-L—&+2,j ̂ 

From the definition of covariance: 
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covCrĵ , rp = (1 - Z " j ̂ e-L-&+2,j) 

X [ ( l  -  S  -  I  \ _ L _  + 2 , j ^  ^ ° ^ ( ^ e - L - k + 2 , k '  ^ e - L - ! L + 2 ,  

^ \-L-k+2,1^,k'  ̂e-L-£+2,k^ 

°̂̂ (̂ e-I.-k+2,k' ̂ e-L-5,+2,ĵ  ̂

"*• \-L-k+2,k(^ • j \-L-2+2,j^ ' ^ '^°^^^e-L-k+2,i' ^e-L-!L+Z,!l} 

\-L-k+2,k \-l.-Z+2,!i '̂ °"̂ V̂L-k+2,i' VL-5,+2,î  

+ E S cov(£̂ _ĵ _ĵ 2̂,i' ̂ e-l-2+2,j))] (*'49) 
If] 

for i = 1, 2, ..., k-1 

j = 1, 2, ..., A-1 

All the covariance-terms in the square bracket of (6.49) are com­

puted by formulas (6.43) and (6.44): 

ê-L-k+2, k ' ̂e-L-jl+2 

9? 

_1 
 ̂̂ e-w-il+2 ̂ e-w-ji+2,k ̂ e-w-5,+2,ji ̂ e-w-Jl+2,k ̂ e-w-Z+2,Z 
w 

(6.50) 



www.manaraa.com

c°v(Eg_L_k+2,k' j ̂ e-L-&+2,j) 

= '̂ °'*̂ (̂ e-L-k+2,k' ê-L-k+2,k̂  

+ cov(Ee_L_k+2,k' h-L-Z+2,p 

 ̂e—w—k+2' e—w-5.+2,k e-w-&+2,& ̂ e-w—£+2,k *'e-w-J!,+2,k 

e—w—5.+2 e—w—&+2,k e—w—ĵ +2,̂ e—w-5.+2,k ̂ e—w—&+2,j (6"51; 

I 'e-L-k+2.i> 

= Z «̂ °v(̂ e-w-Jl+2,£'. ̂e-w-k+2, 

V 5̂  TT _ 
 ̂̂  ̂e-w-5'+2 e-w-&+2,k e-w-&+2,& ̂ e-w-̂ .+2,i ̂ e-w-2+2,j2, (6.52) 

cov(S Eg_L_k+2,i'j ̂e-L-2+2,ĵ  

= J cov(Ee-L-k+2,i' W£+2,î  

+ Ê E cov(Eg_̂ _̂ 2̂,i' ̂ e-l-2+2,ĵ  
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 ̂̂  e-w—£+2 ̂ e—w—Jl+2,k e-w-&+2,2 ̂ e—w-JJ,+2,i ̂ e-w—2+2,1 

~ 1 ̂  w ̂ e-w-&+2 Vw-Jl+2,k Vw-il+2,il ̂ e-w-Z+2,± ^e-vr-l+2,2 ' (6.53) 

±A 

Upon the substitution of terms (6.50), (6.51), (6.52), (6.53) and 

X's into equation (6.49), covarlance between retirement ratios can be 

written as 

cov(r̂ , rp = 

i u ê-u-k+2,1̂   ̂\-v-Ji+2,£ ̂ e-v-Jl+2,ĵ  

X [(1 - Z Z Vu-k+2,k Pe-u-k+2,î ^̂  " ? ̂  ̂ e-v-jL+2,&̂ e-v-&+2,ĵ  
X U ] V 

 ̂̂   ̂̂e-w-2+2 ̂ e-w-&+2,k \-w-5,+2,£ ̂ e-w-Jl+2,k ̂ e-w-Jl+2, 

 ̂ ê-v-2+2,2 ̂ e-v-2+2,2̂  ̂̂e-u-k+2,k ̂ e-w-k+2,1̂  
V 1 u 

'̂ e-w-£+2 ̂ e-w-Ji+2,k ̂ e-w-£+2,jî, ̂ e-w-&+2,k '̂ e-w-£+2,k 

w—5,+2 ̂ e-w-i!,+2,k ê-w—5,+2,£ ̂ e—w-J!,+2,k ̂ e-w-5,+2,ĵ  

+ ê-u-k+2,k Pe-u-k+2,k̂ ^̂  " ̂  ̂  Vv-Ji+2,Jl ̂ e-v-&+2,ĵ  
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-1 

 ̂i w ê-w-&+2,k \-w-&+2,A ̂ e-w-&+2,i ̂ e-w-Jl+2,5,̂  

ê-u-k+2,k ̂ e-u-k+2,k̂  ê-v-2+2,& ̂ e-v-5,4-2,Jî  

w ê—w-5H-2,k ̂ e-w-Ji+2,5, ̂ e-w-&+2,i ̂ e-w-2+2,i 

£ j ̂  "e-w-£+2 ̂ e-w-il+2,k ̂ e-w-Si+2,Z ^e-w-a+2,1 ê-w-£+2, j ^  ̂  

( 6  

The multiplication of the terms in the numerators of (6.54) yields: 

cov(r̂ , r̂ ) = 

i u ̂ e-u-k+2,k ̂ e-u-k+2,î  ~  ̂̂e-v-&+2,2 ̂ e-v-Jl+2 

[  ̂̂ e-w-5,+2 \-w-£+2,k ̂ e-w-il+2,5, ̂e-w-Jl+2,k ̂ e-w-2+2,& 
W 7 7 7 7 

 ̂iuw ê-u-k+*2,k̂ 6~w-5,+2,k ̂ e—w—£+2,̂ e-u-kf2,i 

Pe-w-A+2,k ̂ e-w-S,+2,5, 

-1 

•*" "e-w-Jl+2 '^e-v-Ji+2,£\-w-Jl+2,k '^e-w-ji+2,Jl Pe-v-2+2,j 

^ ^e-w-j!,+2,k ^e-w-2+2,2 
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-1 
ijuw \-u-k+2,k ̂ e-v-&+2,&̂ e-w-&+2,k ̂ e-w-l+2,!i 

ê-u-k+2,i ̂ e-v-&+2,j ̂ e-w-k+2,k ̂ e-w-i!,+2,ii 

"*• "e-w-2+2 '^e-v-!i+2,Z '̂ e-w-£+2,k \-w-£+2,il ̂ e-v-!i+2,i ^e-w-!i+2,k 
vw 

%-w-&+2,k 

luvw A+2 e—u—k+2 ,k e-v-̂ 4-2, & e—w—A+2,k e-w—&+2, & 

ê-v-&+2,Z ̂ e-u-k+2,i ̂ e-w-̂ +2,k ̂ e-w-&+2,k 

.. e-w—&+2 e-v-̂ +2 ,& e-w-2+2 ,k e-w—&+2, & ̂ e—w—Ji+2,k 
jfk V w ' ' 

ê-v-2+2,& ̂ e-w-2+2,j 

 ̂. . e—w—&+2 e—u—k+2,k e-v-&+2,2 e-w—Jl+2,k e—w-2+2,Ji 
1 3 u V w ' ' 
jfk 

ê-v-il+2,Jl ̂ e-u-k+w,i ̂ e-w-£+2,k ̂ e-w-&+2,j 

iw ê-u-k+2,k ̂ e-w-il+2,k ̂ e-w-2+2,& ̂ e-u-k+2,k 

ê-w-&+2,2 ̂ e-w-2+2,i 
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 ̂ *̂ 6—w—£+2 e—u—k+2,k e-̂ v—jl+2,2̂ e-w-&+2,k ̂ e-w-&+2,& 

Pe-u-k+2,k ^e-w-Jl+2,ii ̂ e-w-2+2,i ^e-v-^+2,j 

_1 -

ê-w-2+2 ̂ e-u-k+2,k \-v-£+2,Ji ê-w-&+2,k ̂ e-w-jH-2,2 

ê-u-k+2,k ̂ e-v-&+2,& ̂e-w-jl+2,i %-w-&+2,i 

E E E E E ^e—u-k+2,k ^e—v—£+2,ji ^e-w-&+2,k ^e-w—S,+2,Ji 
2.72 u V w 

^ Pe-u-k+2,k ^e-v-2+2,2 ^e-w-Jl+2,i ^e-w-i!,+2,j  ̂

for i = 1, 2, ..., k-1 

j = 1, 2, ..., £-1 

w = 1, 2, ..., l+k-&; u, v=l, 2, ..., L 

After further simplification (6.55) may be presented as 

cov(rk, y = 

" i u ^e-u-k+2,k Pe-u-k+2,i^ ' i v ^e-v-2+2,£ Pe-v-Ji+2,j 

^ ^ '^e-w-£+2 ^e-v-£+2^^e-w-£+2,k ^e-w-2+2,2 ^e-w-£+2,k 

^^^e-v-&+2,& ^e-w-5,+2,1^ 
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^ '^e-w-£.+2\-u-k+2,k ^e-w-%+2,k 2,2 ^e-w-j!,+2,£ 

^^e-w-Jl+2,k ^e-u-k+2,i ^e-u-k+2,k ^e-w-&+2,i^ 

•*• ê-w-2+2 Vu-il+2,5, '̂ e-w-iJ,+2,k '̂ e-w-ii+2,Ji 

ê-w-2+2,k̂ ê-w-&+2,& ̂ e-u-&4-2,j ê-u-&f2,jZ, ̂ e-w-Ji+2,ĵ  

iuvw ê-u—k+2,k ê—v—£+2,il ̂ e—w-Jl+2,k ê-w-jl+2,Ji 

^ ^e-v-2+2,&^^e-u-k+2,k ^e-w-£+2,i ^e-u-k+2,i ^e-w-j!,+2,k^ 

ijuw ê—U-&+2,& ""e—V—k+2,k ê-w—£+2,k ê-w-5,+2,i!, 

^ ^e-u-Jl+2 ,iî, ^e-w-2+2,j ̂ ^e-v-k+2,i ^e-w-£+2,k ^e-v-k+2,k 

ê-w-&+2, 

-1 
•*• " e-w-Jl+2 ê-u-k+2,k ê-v-Jl+2,Jl Vw-£+2,k \-w-Z+2,i 

^ ^e-v-Jl+2,je-u-k+2,k ^e-w-£+2,i ^e-u-k+2,i ^e-w-k+2,k^^ 

( 6  
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Of special interest here is the case in which all vintage groups 

die according to the same mortality characteristic, 

Pe-w-k+2,j = Pe-u-k+2,j " Pj v, and j. 

It can be directly observed that cov(r̂ , r̂ ) = 0. 

4. Derivation of large-sample variance of r̂  

The variance of r̂  can be estimated by the following formula. 

var(r̂ ) = (1 - Î 

X [(1 - E '"''̂ e-L-k+2,k' 

^̂ e-L-k+2,k  ̂̂ e-L-k+2,î  

X (E cov(e^_^_^^2,k' ̂ e-L-k+2,i^^ 

 ̂e-L-k+2,k(̂  "̂ '̂̂ ^̂ e-L-k+2,î  

+ E^E "'*'(̂ e-L-k+2,i' VL-k+2,ĵ ^̂  

Covariance and variance terms of (6.57) can be estimated by using for­

mulas (6.43) and (6.44): 

'"'%-L-k+2,k' • V»-k+2.t (''e-»-k+2,k - Pe-,-k+2.k» 
w 

_ y —1 2 
 ̂̂e-w-k+2 e-w-k+2,k Pe-w-k+2,k '̂ e-w-k+2,k (6.58) 
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cov(.eg_L_ĵ 2̂,k' ̂ e-L-k+2,î  

 ̂̂e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,i (-6*59) 

var(.eg_L_k+2,i> = 

-1 2 
 ̂'̂ e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,i (6.60) 

'̂ °̂ ^̂ e-L-k+2,i' VL-k+2,j 
J = 

-1 2 
 ̂̂e-w-k+2 %-w-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,j (6.61) 

The substitution of A's, (6.58), (6.59), and (6.60) and (6.61) into 

57) gives the variance of as 

var(r̂ ) - (1 - Z % Vu-k+2,k 

X [(1 - Î Ï "e-u-k+z.k ''a-u-k+2,i' 
i u 

-1 2 

ê-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,k '̂ e-w-k+2,k̂  

+ 2(E •̂ e_u_k+2 k Pe-u-k+2,k̂ ^̂ " Ĵ '̂ e-v-k+2,k Pe-v-k+2,î  
U  I V  
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-1 2 

 ̂ i w \-w-k+2,k ̂ e-w-k.+2,k ̂ e-w-k+2,î  

\-u-k+2,k ̂ e-u-k.+2,k ̂ e-u-k+2,k)̂  

 ̂'̂ e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,i '̂ e-w-k+2,i 

 ̂'̂ e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,1 ̂ e-w-k+2,j? ̂ (6. 

The multiplication of the terms in the numerator of (6.62) results in 

™r(r̂ J = (1 - Î Z Vu-l«-2,lc fe-u-k+2,i'"'' 
i u 

 ̂ "e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,k *̂ e-w-k+2,k 
w ' ' 

-1 2 
2EZZ ne-w-k+2 '^e-u-k+2,k '^e-w-k+2,k ^e-u-k+2,i 
lUW 

 ̂̂ e-w-k+2,k ̂ e-w-k+2,k 

-1 2 
+ ZIIll "e-w-k+2 Vu-k+2,k ^e-v-k+2,k ̂ e-w-k+2,k 
ijuvw ' ' 

 ̂̂ e-u-k+2,i ̂ e-v-k+2,j ̂ e-w-k+2,k ̂ e-w-k+2,k 

- 1 2  
^i^ '^e-w-k+2 ^e-u-k+2,k ^e-w-k+2,k ^e-u-k+2,k 
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 ̂̂ e-w-k+Zjk ̂ e-w-k+2,i. 

+ 2ZZZZZ Vw-k+2 ^e-u-k+2,k ^e-v-k+2,k Vw-k+2,k 
ijuw ' ' 

 ̂̂e-u-k+2,k ̂ e-v-k+2,j ̂ e-w-k+2,i ̂ e-w-k+2,k 

+ E2ZZ ê-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k 
iuvw ' ' ' 

Pe-v-k+2,k ^e-w-k+2,i *^e-w-k+2,i 

E EEES êru-k+2,k ̂ e-v-k+2,k \-w-k+2,k 
ifjuvw ' ' 

 ̂̂e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,ĵ  (6.63) 

After further simplification (6.63) can be rewritten as 

-4 
var(r^) = (1 - Î Z Vu-k+2,k Pe-u-k+2,i> 

1 u 

ê-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,k 
X 

w 

îw ê-u-k+2,k ̂ e-w-k+2,k ̂ e-u-k+2,i ̂ e-w-k+2,k 

+ EEZZ '̂ e-w-k+2 ̂ e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k 
LUVW 
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 ̂̂ e-u-k+2,k ̂  e-v-k+2,k ̂  e-w-k+2,i 

"l 2 
+ 2ZZE ê-u-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,k 

iuw 

ê-w-k+2,k ̂ e-u-k+2,i ê-u-k+2,k ̂ e-w-k+2, 

~X 2 
+ ESZZZ ̂ g_̂ _]ç̂ 2 ̂ e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k 
ijuvw 

^̂ e-u-k+2,i ̂ e-v-k+2,j ̂ e-w-k+2,k • 

"1 2 
+ ZZZZZ ê-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k 
13UVW 

 ̂̂ ê-w-k+2,k ̂ e-v-k+2,j e-u-k+2,k ̂ e-w-k+2,i 

ê-w-k+2,k ̂ e-u-k+2,̂ e-u-k+2,k ̂e-w-k+2,i 

 ̂̂ ê-w-k+2,k ̂ e-v-k+2,j ê-v-k+2,k ̂ e-w-k+2, ĵ  ̂̂ 

Of special interest here is the case in which all vintage groups are 

subject to the same mortality characteristic, i.e., 

ê-w-k+2,j ®e-u-k+2,j ~ 

for all possible values of u, w, and j. 
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The variance of r̂  is then reduced to; 

,ar(r̂ ) = (1 - E I Pi''* 
1 w 

 ̂"e-w-k+2 ̂ e-w-k+2,k 
w iuw 

2 
\-u-k+2,k ̂ e-w-k+2,k ̂ k ̂ i 

, ryyy —1 2 2 
iuvw 'e-u-k+2,k ̂ e-v-k+2,k \-w-k+2,k ̂ k î 

 ̂ijuw \-u-k+2,k ̂ e-v-k+2,k \-w-k+2,k ̂ k ̂ i ̂ j ̂ 

But 

L L 

ê-u-k+2,k = .̂̂ e-v-k+2,k  ̂u=l v=l 

Hence, 

var(r̂ ) = (1 - Î p.)-4 (Z Vw-k+2,k' 
1 w ' 

" ("k % - 2Pk : 'i + "k' ̂ Pi + Pk'Z Pi)') 

The variance of r̂  may be written as 

- 1 2  V) 
var(rĵ ) - (Z Vw-k+2,k̂  (1-2 
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where 

is defined as in (5.26) 

Suppose that all vintage groups have the same size, say n̂  ̂  

n for possible value w, then (6.66) is given by 

var(r̂ ) = 
- v' 

(6.67) 
k-1 

n L(1 - Z p.) 
i=l  ̂

D. L-year Experience Band Based on Item Value 

So far, the models were derived based upon item counts. Since most 

of industrial property accounts are kept in terms of units of dollars 

rather than item counts hence, it is appropriate to consider the model 

in. terms of dollars (item values). 

This section concentrates on modeling based on item value. It can 

be shown that essentially the basic formulas for the retirement ratios 

and the corresponding variance and covariance remain the same as for the 

model based on item counts. The variance and covariance are slightly 

changed and the meanings of IT'S and p's are not changed. 

1. Derivation of observed retirement ratios 

From (6.35), the retirement ratios for the k̂  ̂age interval can be 

expressed as 

 ̂%-w-k+2 "e-w-k+2,k 
r, 
k 

 ̂â n 
w e-w-k+2 e-w-k+2 (6 .68)  
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If both numerator and denumerator of (6.68) are divided by 
L 

\ Vw-k+2' = 
W=1 

Z a ,.o ê-w-k+2 "e-2-k+2,k 
e-w-k+2 — :• 

 ̂ '̂ e-w-k+2 "e-w-k+2 \ = — 

Z a , .„ "e-w-k+2 "e-w-k+2 "e-w-k+2,i 

" "e-w-k+2) iw e-w-k+2 (Z "e-w-k+2 
w w 

From the definitions of TT'S and p's, r̂  may be written as 

'k  ̂

 ̂̂ e-w-k+2 ̂ é-w-k+2,k ̂ e-w-k+2,k" 

 ̂̂ e-w-k+2 \-w-k+2,k ê-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,i 
w iw 

(6.69) 

In terms of X's and e*s, (6.69) can be expressed as 

\-L-k+2,k ê-L-k+2,k 

k - Z Ae_L_k+2,i " ̂  Ce-L-k+2,i 
(6.70) 

where 

*̂k  ̂̂ e-w-k+2 ̂ e-w-k+2,k 
w 

ê-L-k+2,i  ̂̂ e-w-k+2 ̂ e-w-k+2,k̂ ê-w-k+2,i ê-w-k+2,î  
w 

e-L—k+2,i'  ̂e—w—k+2 e—w—k+2,k ̂ e-w—k+2,i 

Equation (6.70) can be approximated by linear order terms of the 
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Taylor series: 

_ , . '̂ e-L—k+2,k 
k ~ e-L-k+2,k \_L_k+2,k G-L-k+2,k 

where 

and 

= ê-L-k+2.k 

e-L-k+2,k (A*̂  - ̂ "e-L-k+a.k̂  

k-1 

°̂e-L-k+2,k = ê-L-k+2,i 

k—1 

G°e-L-k+2,k " ê-L-k+2,i * 
X—X 

2. Derivation of large-sample covariance of and r̂  

As in the case of formula (6.49), the covariance of retirement 

ratios that are based on item values can be calculated by the following 

formula. 

covCrjj..  ̂\-L-k+2,î  ~ j ̂ 6-l-2+2,ĵ  

X [(A*k - 2 ̂ e-L-k=2,î ^̂ *S, " | ê-L-k+2,ĵ  

X cov(Eg_̂ _̂ 2̂,k' ^e-L-Z+2,Z^ 
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ê-L-A+2,A(̂ *k " J \-L-k+2,̂ ê-l-k+2,k' VL-£+2,k̂  

''°̂ ^̂ e-L-k+2,k' Ce-L-A+2,j)) 

\̂-L-k+2,k̂ ^̂ *£ " j \-L-5.+2,ĵ  J VL-jl+2,il' S-L-k+2,î  

ê-L-k+2,k Vl-£+2,£̂ !' '̂ °'̂ ^̂ e-L-k+2,i' S-L-Jl+2,î  

+ Ŝ E cov(ê _ĵ _ĵ 2̂,i» =6-1-2+2,]))] (6.72) 

for i = 1, 2, ..., k- 1; j = 1, 2, ...,&- 1. 

Again, if it is assumed that each vintage group included in the 

study dies according to multinomial distribution with parameter 

and p 1 .o • > for i=l, 2, ...,N then covariances and variances of e's 
e—w—K+z,1 

in (6.72) can be estimated by formulas (6.43) and (6.44): 

c°̂ Ĉg_L_k+2,k' ̂ e-L-£+2,£) 

" ̂  "e-w-£+2 %-w-£+2 \-w-£+2,k "e-2-2+2,& 
w 

ê-«-£+2,k ̂ e-w-&+2,2 (.6.73) 
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'̂ °̂ ^̂ e-L-k+2,k' ̂ e-L-&+2,k̂  

_ „ —1 2 
'̂ e-w-iJ.+2 ê-w-2+2 ̂ e-w—ji,+2,k ̂ e—w—£+2,5, 

w 

ê-w-S,+2,k '̂ e-w-Ji+2,k (6.74) 

covCê _ĵ _ĵ 2̂,k' ̂ e-L-2+2,j) 

~1 2 
 ̂'̂ e-w-£+2 ̂ e-w-2+2 ̂ e-w-&+2,k ̂ e-v-i+2,1 ̂ e-w-Jl+2,k 

 ̂̂ °"̂ ^̂ e-L-ii+2,Jl' VL-k+2,î  

~1 2 
 ̂̂  %-w-&+2 %-w-&+2 ̂ e-w-%+2,k ̂ e-w-Ji+2,Jl ̂ e-w-£+2,ii 

ê-w-2+2,i (6.76) 

J c°v(Ee-L-k+2,i' ̂ e-L-&+2,î  ~ 

 ̂̂  e—w—Jl+2 e-w—Jl+2 e-w—2+2,k e-w-ii+2,ii ̂ e—w-&+2,i 

ê-w-Jl+2, i (6.77) 
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E^E covCeg_ĵ _ĵ 2̂,i' %-i,-2+2,j). 

^ e-w—Z+2 ^e-w-Z+2 ê-w-&4-2,k ̂ e-w-5,+2,5, ̂ e-w—Ji+2,i 

 ̂Pe-w-j!,+2,j (6.78) 

With substitution of A's, (6.73), (6.74), (6.75), (.6.76), (6.77) and 

(6.78) into (6.72) yields 

covCr̂ , y . 

^e-w-k+2 ê-s-k+2,k %-u-k+2 ̂ e-u-k+2,k ̂ e-u-k+2,î  

ê-t-Z+2 e-t-&+2,& %-v-&+2 ̂ e-v-2+2,2 ̂ e-v-2+2,ĵ  

ê-s-k+2 ̂ e-s-k+2,k %-u-k+2 \-u-k+2,k ̂ e-u-k+2,î  
s lU 

e-t—Z+2 e-t—&+2,& ê—v—ii+2 e—v—&+2,2 ̂ e—v-Jl+2,ĵ  

 ̂  ̂e—w—J&4-2 e~w~-2H"2 e-w—&+2,k e—w—il+2,Jl ̂ e-w—2+2,k̂ e-w—&+2,&) 

ê-t—£+2 e-t—Z+2,IL ê-t—ii+2, 

%-s-k+2 ̂ e-s-k+2,k %-u-k+2 ̂ e-u-k+2,k ̂ e-u-k+2,î  
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~X 2 
 ̂̂ ̂e-w-Z+2 ̂ e-w—£+2 w—£+2,k ̂ e-w-2+2,£ ̂ e-w-Jl+2,k 
w 

ê-w-A+2,k 

-1 2 
ĵ k w ê-w-Jl+2 ̂ e-w-2+2,k ̂ e-w-Ji+2,£, ̂ e-w-£+2,k 

ê-w-Jil+2,ĵ  

^e-s-k+2 Vs-k+2,k ^e-s-k+2,k^ 

^ Vt-il+2 Vt-il+2,£ " Vv-£+2 Vv-£+2,£ ^e-v-£+2,j) 

^ "^e—w—£+2 ^e-w-£+2,k ^e-w-£+2,£ ^e—w—£+2,£ ^e—w~£+2,i 
2.W 

Vs-k+2 Vs-k+2,k ^e-s-k+2,k^(^ %-t-£+2 '^e-t-£+2,£ 

 ̂Pe-t-£+2,£̂  

(ZZ n ê-w-£+2 ̂ e-w-£+2,k ̂ e-w-£+2,£ ̂ e-WT£+2,i 
iw 

*^e-w-£+2,i 

"*1 2 
E Z Z w-£+2 ̂e-w-£+2 ,k ̂e-w-£ +2 ,£ ̂e-w-£+2 ,i ̂e-w-£+2 ,j ̂ ̂ 
If] w 

(6.79) 
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When the terms in the numerators are multiplied out, (6.79) can be 

written as 

cov(rĵ , r̂ ) = 

ê-s-k+2 ̂ e-s-k+2,k ê-u-k+2 ̂ e-u-k+2,k ̂ e-u-k+2,î  

^ Vt-5,+2 ̂ e-t-k+2,Jl ~ F %-v-&+2 ̂ e-v-2+2,& ̂ e-v-2+2,j) 
t jv 

•  ̂ ê-w-il+2 ̂ e-s-k+2 ̂ e-t-il+2 %-w-&+2 ̂ e-s-k+2,k 
stw 

ê-t-&+2,2̂ e-w-&4-2,k \-w-J!,+2,Ji ̂ e-w-&+2,k ̂ e-w-&4-2,2 

 ̂ ê-t-a+2 ̂ e-u-k+2 ̂ e-w-il+2 ̂ e-t-£+2̂ e-u-k+2,k 

ê-w-il+2,k ̂ e-w-2+2,̂ e-w-2+2,k ̂ e-w-&+2,& ̂ e-u-k+2,i 

+ EESZ °-g_̂ _£̂ 2 %-s-k+2 %-v-2+2 ̂ e-w-il+2 ̂ e-s-k+2,k 
jsvw 

X ̂ e-v-2+2,2 \-w-2,+2,k V-w-il+2,£ ̂ e-w-&+2,k 

ê-w-a+2,!i ê-v-£+2,j 

EEEZZ ̂ e-w-5'+2 ̂ e-u-k+2 ̂ e-v-2+2 ̂ e-w-&+2 ̂ e-u-k+2,k ̂ e-v-2+2,2 
i] uvw 
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ê-w-2+2,k ̂ e-w-l+lfZ ̂ e-UTk+2,i ̂ e-v-£+2,j ̂ e-w-Jl+2,k ̂ e-w-£+2,5, 

gtw ̂ e-w-£+2 ®e-s-k+2 ̂ e-t-l+2 %-v-SL+Z '̂ e-s-k+2,k '̂ e-t-£+2,£ 

 ̂̂ e-w-£+2,k \-w-S,+2,Z ê-t-£+2,£ ̂ e-2-£+2,k '̂ e-w-£+2,k 

Itw ê—t—£+2 ̂ e-u—k+2 ̂ e-w-£+2 ̂ e-t-£+2,£̂ e-u-k+2,k 

ê-w- £f2, k ̂ e-w- £+2, £ ̂ e-1- £+2, £ ̂ e-u-k+2, i ê-w- £+2, k '̂ e-w-X, +2, k 

. e-w-£+2 ̂ e—s-k+2 ̂ e-t—£+2 ̂ e-w-£+2 ̂ e-s-k+2,k ̂ e-t—&+2,£ 
j s tw . 
ĵ k 

\-w-£+2,k ̂ e-w-£+2,£ ̂ e-t-£+2,£ ̂ e-w-£+2,k ̂ e-w-£+2,j 

+ EZ2Z2 ê-t-£+2 ̂ e-u-k+2 ̂ e-w-£+2 \-t-Jl+2,£ ̂ e-u-k+2,k 
ij tuw 

\-w-£+2,k ̂ e-w-£+2,£ ̂ e-t-&+2,£ ̂ e-u-k+2,i ̂ e-w-Ji+2,k ̂ e-w-jl+2,j 

ZZSE %_g_k,+2 %-t-£+2 ̂ e-w-£+2 ̂ e-s-k+2,k \-t-£+2,£ 
istw 

ê-w-£f2,k \-w-£4-2,£ ̂ e-s-k+2,k ê-w-£+2,£ ̂ e-w-Z+2,1 

+ ZZEZE ̂ e_%r_£+2 ̂ e-s-k+2 ̂ e-v-£+2 %-w-£+2 ̂ e-s-k+2,k ̂ e-v-£+2,£ 
i] sw 



www.manaraa.com

133 

\-w-iJ+2,k. ̂e-\i-Si+2,i ê-s-k+2,k ̂ e-w-2+2,& ̂ e-w-Jl+2,i 

^ Vv-il+2,j 

*1 2 
 ̂istw ̂ G-w-&+2 ̂ e-s-k+2 %-t-&+2 ̂ e-w-i+2 ̂ e-s-k+2,k ̂ e-t-2+2,2 

ê-w-&+2,k ̂ e-w-2+2,& ̂ e-s-k+2,k ̂ e-t-&+2,& ̂ e-w-&+2,i 

ê-w-̂ +2, i 

. . ê—w-2+2 ̂ e-s-k+2 ̂ e—t—&+2 ̂ e-w-2+2 e-s-k+2,k e-t-i!'+2,£ 
xjstw 
i=j 

ê-w-£+2,k ̂ e-w-&+2,& ̂ e-s-k+2,k ̂ e-C-2+2,& ̂ e-w-Jl+2,1 

"Pe-w-&+2,j] (̂ '8' 

After considerable simplification, (6.80) may be presented as: 

cov(rk. r̂ ) = 

ê-s-k+2 ̂ e-s-k+2,k ê-u-k+2 ̂ e-U"k+2,k ̂ e-u-k+2,î  

 ̂ Vt-£+2 '̂ e-t-&+2,& " Vv-il+2 \-v-2+2,& Pe-v-Jl+2,j)"̂  
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-1 2 

ŝtw e—s—k+2 ê-w-2-̂ 2 ̂ e-s-k+2,k ̂ e-t—£+2,Jl 

 ̂'̂ e-w-2+2,k "̂ e-w-m.S, ̂e-w-2+2,k̂ ê-t-2+2,& " Pe-w-5.+2,£,̂  

-1 2 
+ ZZZZ ̂ g_̂ _2+2 ̂ e-t-i+2 ê-u-k+2 %-w-£+2 ̂ e-t-i!.+2,£ 

xtuw ' 

ê-u-k+2,k ̂ e-w-&+2,k ̂ e-w-jl+2,& ̂ e-w-5,+2,k ̂ e-u-k+2,i 

 ̂̂ Pe-w-ji+2,Jl ~ ̂ e-t-£+2,£̂  

-1 2 

jĝ  j!,+2 ê-s-k+2 ̂ e—v-jl+2 ̂ e-w-Jl+2 ̂ e-s-k+2,k ̂ e-v-Jl+2,Jl 

 ̂̂ e-w-Jl+2,k ̂ e-w-jl+2,£ ̂ e-w-Ji+2,k̂ ê-w-£+2,S, ̂ e-v-5,+2,j 

ê-v-J!,+2,£ ̂ e-w-£+2,ĵ  

-1 • 2 

+ EZZEZ e_̂ _2+2 ̂ e—u—k+2 ̂ e—v—Jl+2 e-w-Jl+2 e-u-k+2,k 
xjuvw 

ê-v-£+2,J2.̂ e-w-£+2,k ̂ e-w-{,+2,& ̂ e-w-5,+2,k ̂ e-u-k+2,i 

 ̂(Pe-v-&+2,& ̂ e-w-2+2,j ê-w-Jl+2,£ ̂ e-v-&+2,ĵ  
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+ ZEZZZ %-s-k+2 %-v-2+2 %-w-2+2 ̂e-s-k+2,k 
ijsw 

ê-v-2+2̂ e-w-Ji+2,k ̂ e-w-jl+2,£ ̂ e-s-k+2,k ̂ eTW-&+2,i 

^̂ e-w-Z+2fi ̂ e-v-2+2,j ê-v-&+2,& ̂ e-w-il+2,ĵ  ̂ (6.81) 

for i = 1, 2, ..., k-1; j = 1, 2, ..., &-1. 

s, t, u, V, = 1, 2, ..., L; w = 1, 2 L + k - A. 

Under the condition that all vintage groups have the same life 

distribution, 

Wll+2,j - = Pj '• ». »•! j. 

Then, it can be easily observed that cov(r̂ , r̂ ) = 0. 

3. Derivation of large-sample variance of r̂  

In a manner similar to that used for equation (6.57), the estimates 

of variance of retirement ratios for each age interval can be computed 

by the following formula. 

var(r̂ ) = - Î 

I X 

 ̂ ^̂ e-L-k+2,k̂ *̂k ~ ̂  \-L-k+2,î  ? '̂ °"̂ ^̂ e-L-k+2,k' ̂ e-L-k+2,î  
w X 
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\-L-k+2,k(̂  ̂ ^̂ (̂ e-L-k+2,î  "'" "̂ V̂L-k+2,i' VL-k+2,3̂ ^̂  

(6 .82)  

According to Lemma 1 (Chiang, 1960a), the number of units retired from 

each vintage group has the multinomial distribution with parameters 

n , - and p , .0 •• Therefore, the variances and covariances of 
e—w-K+z e-w—K+z,1 

E'S in (6.82) can be derived from (6.44) and (6.43): 

var(Ee_l_k+2.i) = 

= _ -1 2 2 
ê-w-k+2 %-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,i '̂ e-w-k+2,i w » > J 

and 

°̂̂ Ĉe-L-k+2,i' ̂ e-L-k+2,ĵ  

= _ _ -1 2 2 
 ̂̂e-w-k+2 %-w-k+2 e-w-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,j 

for w = 1, 2, ... L 

i, j = 1, 2, ..., N 

Upon the substitution of X's, the variances and covariances of E's into 

(6.82), variance of r̂  may be written as 

var(rk) = (Z %_s_fcf2 Vs-k+2,k" %-v-k+2 Vv-k+2,k^e-v-k+2,i^. 
S IV 

2 
 ̂[(2 ®e-s-k+2 ̂ e-s-k+2,k ê-v-k+2 ̂ e-v-k+2,k ̂ e-v-k+2,î  
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—1 2 2 

ê-w-k+2 ̂ e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,k '̂ e-w-k+2,k̂  

ê-u-k+2 e-u-k+2,k ̂ e—u-k+2,k̂ ê-s—k+2 ̂e—s-k+2,k 

%-v-k+2 ̂ e-v-k+2,k ̂ e-v-k+2,î  

 ̂ iw %-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,k ̂ e-2-k+2,î  

2 
ê-u-k+2 ̂ e-u-k+2,k ̂ e-u-k+2,k̂  

u 

- 1 2  2  

(ZZ ̂ e_w-ic+2 ̂ e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,i iw » » > 

T T y 2 2 », 
 ̂"e-w-k+2 %-w-k+2 \-w-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,j 

(6.83) 

for i, j = 1, 2, ..., k - 1; 

S, ii| "Vj 2 — X) 2) # # # ) L# 

When the terms in the numerator of (6.83) are multiplied out it yields 

varCrfc) (S ®g_g_jĵ 2 ̂ e-s-k+2,k ê-v-k+2 ̂ e-v-k+2,k̂ e-v-k+2, 
s IV 

-1 2 
X [EZZ ê-s-k+2 %-t-k+2 ̂ e-w-k+2 \-s-k+2,k ̂ e-t-k+2,k 

stw 

2 
ê-w-k+2,k ̂ e-w-k+2,k '̂ e-w-k+2,k 
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—X 2 
2ZZZZ Q—y—S,+2 e—s-k+2 ̂ e—v—k+2 e—w—k+2 e—s—k+2,k 
isw ' 

2 
 ̂̂ e-v-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,k '̂ e-w-k+2,k ?e-v-k+2,i 

•"1 2 
+ EEZSZ ̂ e-w-k+2 %-u-k+2 %-v-k+2 ̂ e-w-k+2 ̂ e-u-k+2,k ̂ e-v-k+2,k 
i] uvw 

2 
ê-w-k+2,k ̂ e-u-k+2,i ̂ e-v-k+2,j ̂ e-w-k+2,k *̂ e-w-k+2,k 

2ZZEE ê-s-k+2 ̂ e-u-k+2 %-w-k+2 ̂ e-s-k+2,k ̂ e-u-k+2,k 
isuw 

2 
ê-w-k+2,k ̂ e-u-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,i 

2 
+ 2ZZZEZ ê-u-k+2 ̂ e-v-k+2 %-w-k+2 ̂ e-u-k+2,k ̂ e-v-k+2,k 

ijuvw 

2 
ê-w-k+2,k ̂ e-u-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,i ̂ e-v-k+2,j 

"•1 2 
+ ZEZZ ê-u-k+2 %-w-k+2 ̂ e-u-k+2,k ̂ e-v-k+2,k 

LUVW 

2 
ê-w-k+2,k ̂ e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,i 

Z Z Z Z Z ̂e-w-k+2 ̂ e-u-k+2 ̂ e-v-k+2 %-w-k+2 ̂ e-u-k+2 ,k ̂ e-v-k+2 ,k 
if] uvw 

2 
ê-w-k+2,k ̂ e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,i ̂ e-w-k+2,j ̂ (6.84) 
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After considerable simplification, (6.84) may be presented as 

varCrfc) = (Z ae_s.k+2 '"'e-s-k+2,k" ®e-v-k+2 '̂ e-v-k+2,k̂ e-v-k+2,î  

[ZZE %_g-k+2 %-t-k+2 ̂ e-w-k+2 ̂ e-s-k+2,k ̂ e-t-k+2,k" 
stw 

2 
 ̂̂ e-w-k+2,k ̂ e-w-k+2,k '̂ e-w-k+2,k 

+ EZZZ %-u-k+2 %-v-k+2 %-w-k+2 ̂ e-u-k+2,k ̂ e-v-k+2,k 
lUW 

2 
ê-w-k+2,k ̂ e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,i 

2ZZZZ ê-s-k+2 ̂ e-v-k+2 ̂ e-w-k+2 ̂ e-s-k+2,k 
isvw 

2 
ê-v-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2,k ̂ e-v-k+2,i 

+ 2ZZZZ %-s-k+2 ̂ e-v-k+2 ̂ e-w-k+2 ̂ e-s-k+2,k ̂ e-v-k+2,k 
isvw 

2 
 ̂̂ e-w-k+2,k ̂ e-w-k+2,k̂ ê-w-k+2,k ̂ e-v-k+2,i ê-u-k+2,k 

ê-w-k+2,î  

+ ZZZZZ ̂ g_̂ _]ĵ 2 ̂ e-u-k+2 %-v-k+2 ̂ e-w-k+2 ̂ e-u-k+2,k ̂ e-v-k+2,k 
xjuvw 

2 
ê-w-k+2,k ̂ e-w-k+2,k ̂ e-u-k+2,i ̂ e-v-k+2,j 
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•"1 2 
+ ZZZSZ ê-u-k+2 %-v-k+2 ̂ e-w-fc+2 ̂ e-u-k+2,k ̂ e-v-k+2,k 

1 j uvw ' 

2 
ê-w-k+2,k̂ ê-w-k+2,k ̂ e-v-k+2,ĵ ê-u-k+2,k ̂ e-w-k+2,i 

ê-u-k+2,i ̂ e-w-k+2,k̂  ê-u-k+2,k ̂ e-w-k+2,i 

^̂ e-w-k+2,k ̂ e-v-k+2,j ê-v-k+2,k ̂ e-w-k4-2,ĵ ^̂  (6«.85) 

When all vintage groups are subject to the same mortality characteristic, 

i.e., 

ê-u-k+2 ,j ê-v-k+2,j ~ ̂ j 

for all possible values of u, v and j, then the estimate of the variance 

of r̂  is much simplified: 

var(r̂ ) = (Z Vs-fct2,k'̂  " [ ̂1»"̂  

[ZEE %-s-k+2 ̂ e-t-k+2 %-w-k+2 
stw 

2 
ê-s-k+2,k ̂ e-t-k+2,k ̂ e-w-k+2,k ̂ k % 

•"X 2 
e—w—k+2 e—u—k+2 e—v—k+2 e-w-k+2 

uvw 

2 2 • 

\-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k ̂ k î̂  
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-1 . 2 
2 ZEE ê-s-k+2 ̂ e-v-k+2 ̂ e-w-k+2 
suw 

2 
ê-w-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k 

-1 2 
+ Z2Z '̂ e-w-k+2 ̂ e-u-k+2 ̂ e-v-k+2 ̂ e-w-k+2 
uw 

ê-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k ̂ k̂  ̂  ̂

Equation (6.86) may be written as 

• var(r̂ ) = (Z ê-s-k+2,k̂  ̂" ! P,))"* 
s 1 

-1 2 
X [EZE '̂ g_y_]j+2 ̂ e-u-k+2 %-v-k+2 ̂ e-w-k+2 

uvw 

2 
 ̂̂ e-u-k+2,k ̂ e-v-k+2,k ̂ e-w-k+2,k 

" (Pit ">k - I Pi + "k I "i + Pfc" 

or 

var(r̂ ) - (E Vs-k+2 Vs-k+2,k'"̂  
S 

-1 2 2 . ~ \ ̂ 
ê-w—k+2 e—w—k+2 e-w-k+2,k (1 - Z p.) 

w . 1 
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Of special interest here is the case in which costs per unit from 

all vintage groups and all vintage sizes are the same, say a and n, re­

spectively. Then, it can be shown that (6.87) is simplified to; 

(Rk -
(Y = k-l (̂ '88) var 

Ln(l - Ï p.) 
i=l 

where 

- the true hazard rate 

Pk 

k-l 
(1 - Z p ) 

i=l  ̂
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VII. THE DISCRETE MODEL UNDER GEOMETRIC 

CONDITIONAL DISTRIBUTIONS 

This chapter deals mainly with geometric distributions. It basical­

ly consists of three sections. The first presents derivations of the 

estimates of variances and covariances of hazard rates for long-lived 

property when value or vintage groups are assumed to follow geometric 

distributions. The second demonstrates the relative variance efficiency 

of the ordinary least square (OLS) estimator to weighted least square 

(WLS) estimator for the estimates of the true average hazard rates. 

In the third section, an evaluation is made of the bias of the esti­

mators derived in part two. 

A. Geometric Distribution 

Random variable x is defined to have a geometric distribution if 

the density function of x is given by 

f(x) = P(1 - P)* 

= 0 otherwise x = 0, 1, 2 

The geometric distribution has interesting features, namely, 

1. it is parameterized by single parameter p,-

2. the hazard rate associated with it is constant, and 

3. it can be used to represent long-lived property when 
p is small. 

The equivalent of the geometric distribution in the continuous case 

is negative exponential distribution. 
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In engineering valuation, the constant hazard rates can be inter­

preted as describing the situation in which the portion of the property 

being retired in any year is independent of age. 

Some industrial properties have long-lived distributions, hence, 

their retirement experience can be modeled by geometric distribution with 

small p, where p represents the true probability of units or dollars re­

tired during any age interval. 

B. Variance-covariance Structures of Hazard 

Rates for Long Expected Life 

1. Property groups classified by value and life 

For the first k periods, the retirement experience from the proper­

ty group of value â  is assumed to follow a geometric distribution having 

parameter p , i.e., 
®s 

p = p (1 - p )̂ , for i = 1, 2, ..., k. 
%i S ®s 

For small p , 

p i p (1 - i p ), for i = 1, 2, ..., k. (7.1) 
%i % % 

It is important to note here that only in the first k periods the 

retirement experience is assumed to follow the geometric life distribu­

tions. The remaining life.of a property group may follow some other kinds 

of life distributions. The advent of technology, management policy, eco­

nomic conditions, etc. may affect the characteristics of the future life 
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of the property group. 

Upon the substitution of condition (7.1) into (5.33) and after fur­

ther simplification, the approximate covariance of r̂  may be written as 

cov(r̂ , rj) -

=  { E a 7 r  - Z E a n  p )  ( Z a T T  - Z Z a T r  p  
S  ̂ i r  ̂ r̂ r̂ u  ̂ û j v  ̂ \ 

X [ZSZ —-—— (a TT )(a TT ) p (p - P ) + o (p )] 
sru r â  u â  â  â  â  J â  

where Og(p̂  ) represents the summations of p terms of order of at least 
s s 

three. Considerable simplification may be obtained when the terms of 

order three are negligible. It can be shown that 

cov(r^, rj) = 

' -3 '"s 
= (E a TT ) J [Z Z — (a TT ) X 

sa n r a 
s s s r a r 

s 

 ̂Pa (Pa - Pa (7'%) 
s r s 

Similarly, the variance of retirement ratios for each age interval 

under geometric life distributions can be approximated by 
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-2 ('/"a 
var(r^) = (E ) Î ^ ^ (p - (k + l)p h 

S S S a s s 
j 

-3 '"s \/ (7.3) 
+ 2(k-l)(Z a TT ) 3 Z 2 §— (a 7r ) p p 

s s *S s r **, 

2. Property groups classified by vintage and life 

For each vintage group which is included in the study, it is as­

sumed for the first k periods, that its retirement experience follows a 

geometric distribution having parameters ê-w i+2' 

ê-w-i4-2,i ê-w-i+2̂  ̂ ê-w-i+2̂  

for w = 1, 2, ..., L 

i = 1, 2, ..., k 

For small 

^e-w-i+2,i ^e-w-1+2^^ ^ ̂ e-w-i+2^ * (7-4) 

Iftider geometric conditional distributions, approximate covariances of r̂  

and r̂  can be derived as follows. 

The substitution of (7.4) for p's, and after further-simplification 

(6.56) may be written as 

covCr,^, = (1 - (k - 1) Î Vu-fct2,k ^-u-k+2>'^ " 
u 

X (1 - (A - 1) Z Vv-il+2,ii Pe-v-2+2) ^ 
V 
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 ̂'"u w ê-w-Jl+2,k ̂ e-w-l+2,li \-w-!i+2,l 

^ Pe-w-£+2̂ Pe-u-Jl+2 " ̂e-w-Z+2^  ̂ (̂ "5) 

But 

. -2  
(1 - (k - 1) Z \_ù>k+2,k Pe-u-k+2^ 

u 

= 1 + 2(k - 1) Z •n'e.'u-k+ajk Pe-u-k+2 + (^.G) 

for all k, u 

Upon the substitution of (7.6) into (7.5), and when the terms of order 

three are negligible covariance of r̂  and r̂  may be presented as 

cov(rj^, r^) Vw-Jl+2,k Vw-Jl+2,5,Vu-J!,+2,£ ^ 
u w 

 ̂̂ e-w-&+2̂ ê-u-jZ,+2 ê-w-2+2̂  (7-7) 

for u = 1, 2, ... L; w = 1, 2, ..., L + k -

Under geometric conditional distributions, estimates variance of r̂  

can be derived as follows. With the substitution of (7.4) for p's, and 

after further simplification, (6.64) can be written as 

yar(r^) = (1 - (k - 1) E Vu-k+2,lc Vu-k+a)'" " 
u 
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%-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2 '̂ e-w-k+2 
w 

-1 2 
2(k 1) ZZ ̂ e-w-k+2 ̂ e-u-k+2,k ̂ e-w-k+2,k ̂ e-w-k+2 ̂ e-u-k+2 

uw 

+ Og(P)] (7.8) 

But 

(1 - (k - 1) E T̂ e-u-2,k ̂ e-u-k+2̂  
u 

(1 + 4(k - 1) Z '̂ e-u-k+2,k ̂ e-u-k+2 * (̂ .9) 
u 

l%)on the substitution of (7.9) into (7.8) and when the terms of order 

three are negligible, variance of r̂  may be presented as 

"1 2 
var(rk)  ̂̂ e-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2 '̂ e-w-k+2 

2(k 1) ZZ ê-u-k+2,k ̂ e-w-k+2,k ̂ e-u-k+2 ̂ e-w-k+2 
uw ' 

(7.10) 

The above derivations deal with data which are measured on the basis of 

item counts. Analogously, for the case of data that are kept in units 

of dollars, under geometric conditional distributions, covariances and 

variances are estimated: 

cov(rĵ , r̂ ) = (Z ê-u-k+2,P ê-v-&+2 ̂ e-v-j2,+2,2̂   ̂
u V 



www.manaraa.com

149 

X -1 - 2 
''stw ê-s-k+2 ̂e-t-k+2 ̂e-w-fi, +2 \-s-k+2 ,k ̂e-t-Jl+2, S, 

^ \-w-Z+2,k \-w-Z+2,Z ^e-w-lL+2^^e-t-Z+2 " Pe-w-S,+2̂  ̂ ' (7.11) 

and 

var(rj.) = (2 %_u_k+2 \-u-k+2,k̂   ̂
u ' 

X [ZSZ -1 2  ̂
stw '̂ e-w-k+2 ̂ e-s-k+2 ̂ e-t-k+2 ̂ e-w-k+2 ̂ e-s-k+2,k ̂ e-t-k+2,k 

X 2 
ê-w-k+2 ,k ̂ e-w-k+2 *̂ e-w-k+2 

- 2(k - 1) ZZZ î e-w-k+2 ̂ e-s-k+2 %-v-k+2 %-w-k+2 
sw 

2 
ê-s-k+2,k ̂ e-v-k+2,k ê-w-k+2,k ̂ e-v-k+2 ̂ e-w-k+2̂ ' (7.12) 

C. Variance Efficiency of the Average vs 

Weighted Average Retirement Ratios 

It was mentioned earlier that mortality characteristics for long-

lived property may be modeled by geometric distributions. In this case, 

in view of the hazard rate properties of the geometric distribution, 

a parameter of special interest is 

9 = 1/k S E(r.) (7.13) 
i=l  ̂
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Suppose it is desired to estimate 6. Two kinds of estimators may be used 

to estimate (7.13), namely. 

0 = 1/k Z r. (7.14) 
 ̂ i=l 

and 

e„ = Z w r. (7.15) 
i=l  ̂  ̂

where the weights, ŵ , are chosen to take the variance-covariance struc­

ture of the r̂  into account. 

This section presents the derivations of the relative variance ef­

ficiency of estimators (7.15) to (7.14). 

Efficiency of the estimates of 0 here is simply defined as the quo­

tient of the variances of both estimators. 

k 
var( Z ŵ  r̂ ) 

Efficiency  ̂ (7.16) 

var(k ̂  Z r.) 
i=l  ̂

The weights ŵ , i = 1, 2, ..., k, 

k 
minimize var( Z w r.) 

i=l i 1 

subject to (7.17) 
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To solve the system equations (7.17), first the following function is 

formed: 

f(Wj^, ...5 w^) = var(2 r^) + X(Z - 1) 

lAere \ denotes Lagrangian multiplier. 

Then the corresponding derivatives with respect to X and ŵ , i = 

1, 2, ..., k, are taken, and are set equal to zero to solve for ŵ . 

The function f(ŵ , ..., ŵ ) may be written as 

2 
f(ŵ , ..., Wĵ ) = Z ŵ  var(r̂ ) + Z Z ŵ  ŵ  cov(r̂ , r̂ ) 

i j 

+ X(E w. - 1) 
i  ̂

Its partial derivatives with respect to ŵ  and X are then set equal to 

zero: 

-— = 2 w. var(r.) + 2 Z w. cov(r,, r.) +X= 0 
1 J i J 

for jf i= 1, 2, ...,k, (7.18) 

If = E - 1 - 0 

The system equations (7.18) can be expressed in the matrix form: 
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2 V, 

2 V, 12 

2 V. 
Ik 

1 

2 V 
12 

2 V, 
2k 

2 V 
Ik 

2 V 
2k 

2 V, 

1 

1 

1 

0 

' "l ' 

Wo 

w. 
k 

X 

/ \ 
0 

i 0 

0 

1 

(7.19) 

where and denote the variances and covariances of the r̂ , respec­

tively. Equation (7.19) may be written as 

Vw = 1 
Ax *^0 

If the matrix V is nonsingular, then the weights w are given by 

w = V"̂  1 
•w ~ o 

(7.20) 

For k = 2, the weights ŵ  and ŵ  are found to be 

w, = 1̂2 " ̂2 

1 2 »12 - - V; 

and (7.21) 

w_ = 1̂2 ~ ̂ 1 

2 2 - "l " ̂2 

It can be shown that var(ŵ  r̂  + r̂ ) is estimated by 
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and 

1̂2 " ̂1*̂ 2 

2 "12 - "l - '2 

1̂ ̂  ̂2 
var( 2  )  b y  1 / 4  +  1 / 4  

Hence, 

4(Vi2̂  - V, V ) 

The following three examples illustrate the computations using (7.22). 

Consider a property group which is classified into two value categories. 

For k = 1, 5, = 2, and M = 2, (7.2) gives 

cov(r̂ , rg) = (a TT̂  + b TT̂ )"̂  x 

,a ̂  )2 

X (b TT̂ ) P̂ (Pb - P̂ ) + 
a 

(b TT )̂  
+ — (a 7T̂ ) p̂ Cp, - Py)] (7.23) 

0 

Equation (7.3) for k = 1 and k = 2, respectively, gives . 

— ? O P O Pl-
var(r ) = (a ir + b TT ) ((a ir ) — + (b TT, ) 

X 3D â n b n, 
a b 

v ' - ^ )  
a b 
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(7.24) 

var(r„) = (a TT + b ÏÏ ) ̂ ((a IT )^ — + (b IT — ) + 
6  3 D  â  n  D  n ,  

B. 0 

+ (a TT + b TT, )"^ (2(a TT (b TT, ) + 2(a TT )(b -nj^ 
a D a on 0 . 0  

a  "b 

p 2 p 2 

- ((a TT + 3(a TT (b TT ).) -f- - (3(a TT )(b Trj2 + (bTT,)^)-^) 
a  a  o n  a o  b n .  

a b 

Of special interest here is the case in which the terms of order two are 

negligible. It follows from (7.23) and (7.24), respectively, that 

cov(r^, Tg) = 0 

V = var(r.) = (a TT + b \)~̂  ((a TT )̂  — + (b TT )^ —) 
1  i  a b  a n  b n ,  

a b 

and (7.25) 

v„ = var(r„) = (a TT + b TT ) ̂ ((a TT )̂  + (b TT )̂  )̂ 
i .  i .  a  D  a n  b n ,  

a b 

Upon the substitution of (7.25) into (7.22), the expression yields 

4 Vj vj 
Efficiency  ̂

(V1+V2) 

4(a TT̂ „+ b TT̂ )'̂  (n/̂ (a P̂  + tt̂ )̂  p̂ )̂  

(2(a TT + b TT )~2 (n ~̂ (a TTp + n,"̂ (b N,)^ p. )̂  
a  D  a  a a o  O D  
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Example 2. 

Consider mortality data aggregated over several vintage groups which 

are based on item units. For k = 1 and i = 2, equation (7.7) gives 

cov(rj, r^) - I£ ^ 
uw 

From equation (7.10), it follows that: 

2 2 

var(r ) = Z p q - 2 Z£ -̂*,2 e-w,2 ) 
2 n e-w e-w n e-w e-u 

w e-w uw e-w 

Under the condition that the second order terms are negligible: 

cov(r̂ , ig) = 0 

and (7.27) 

Upon the substitution of (7.26) into (7.22), the expression yields 

2 2 

4(£ *e-.+l,l )(z '«-",2 "e-" ) 
n .1 e-w+1 n 

Efficiency = ÊZÏi_ 

(j; ̂ e-w+1,1 ̂ e-w+1 ̂  ̂ ̂ e-w,2 ̂ e-w ̂ 

w ê-w+1 w '̂ e-w 
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Example 3. 

Consider mortality data aggregated over several vintage groups which 

are based on units of dollars. For k = 1 and Z = 2, equation (7.11) gives 

covCrj. rj) = (I Vv " 
U V ' 

. !-±lV£±i ,1^ ^ X 

stw e-w 

\-w,2 ̂ e-ŵ ê-t ê-ŵ '̂ 

For k = 1 and k = 2 equation (7.12) gives, respectively; 

u stw e-w+1 

2 2 
%-w+l ̂ e-s+1,1 ̂ e-t+1,1 ̂ e-w+1,1 ̂ e-w+1 '̂ e-w+l̂  

and 

varCrj) = (Z a Vu.â "'' 
u ' 

X %-s ^e-t %-w ^ ^ ^2 
stw n e-s,2 e-t,2 e-w, 2 e-w e-w 

e-w 

2 

- 2 ZEE "e-s Vv V» ̂ , Tr̂  , P P ] 
n e-w,2 e-v,2 e-w,2 '̂ e-w ̂ e-v 

svw e-w ' ' ' 

Of special interest here is the case in which the terms of order two 

are negligible. 
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Under this condition: 

cov(r̂ , r̂ ) = 0 

var(r^) = (£ V»H,l' 
u 

-4 X 

V rrrr %-s+l ̂ e-t+1 2 2 , 
n . e-w+1 e-s+1,1 e-t+1,1 e-w+1,1 ̂ e-wfl̂  

stw e-w+1 ' 
(7. 

and 

varCrp = (ï Vu.2>'' " 
u ' 

" 'Î» w" Vt,2 Vw.2 • 

Upon the substitution of (7.28) into (7.22), the expression yields 

Efficiency - 4(Z a^-u+l VttH.l'"* Vu Vu,2'"'' " 
U u 

V fvvv e-s+l ̂ e-t+1 2 2 _, \ * 
_ n - e-w+1 e-s+1,1 e-t+1,1 e-w+1,1 e-w+1 

stw e-w+1 

' 'sS Vw Vs.2 V:.2 <-.,2 V„' =< • 

" !<î s.̂ 1 Vun.i''' wi 's-s+i.i x 
u stw e-w+1 

ê-t+1,1 ̂ e-w+1,1 ̂ e-w+1̂  ̂  
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+ <5 - Vu.2>"' 'g- IZ Vs.2 Vt.2'L.2Pe-„'r' 

D. Evaluating Bias 

In section B of this chapter, the true average retirement rates over 

1  ̂
certain age intervals, 8 = — Z E(r.), are estimated by OLS and WLS re-

 ̂i=l  ̂

1 k k 
resulting in the estimators 0. '= — Z r, and 6_ = Z w. r., respective-

^  * ^ 1 = 1 ^  ^  i = l  ^  ̂  

ly. Estimator 0̂  will be an unbiased estimator for G, while 6̂  will be 

biased, with the bias given by 

Bias = Z (w. - 1/k) E(r ). (7.29) 
i=l  ̂ . 

For k = 2, with v̂ ^̂  = 0 to the first order in p, (7.29) may be expressed 

as 

V (E(r ) - E(r )) + v (E(r_) - E(r )) 

Bias = -2 i 2(,i + v,) — • (7-3°) 

This section concentrates on evaluating (7.29) and (7.30). 

1. Property groups classified by value and life 

Before bias can be computed, it is necessary to evaluate E(r̂ .̂ To 

obtain a better understanding consider the property group which is classi­

fied into two value-categories, say a and b. 

Equation (5.5) gives 

k . "k 
+  - r ^ — +  A .  1  r  \  t , . (7.31) 

'k (A - Z A.) ̂  (A - Z A.) ̂  k (A - Z A.)2 * 
i  ̂ i  ̂ i  ̂
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Taking the expectation of (7.31), one obtains 

° (X - I X.) (7-32) 

i  ̂

Since by definition E(ê ) = 0 for all i. 

In terms of p's, (7.32) can be written as 

a TT p + b IT, b̂, 
 ̂  ̂ . (7.33) 

(a ÏÏ + b IT, - a ÏÏ E p - b TT, E p, ) 
b a ^ ̂ a^ b ^ ^b^ 

But 

a 'a I P, + b Z Pj 

(aiT̂  + bv" a TTïSrnĤ ) = 
a b . 

aïïZp + b T r  Zp 
_1 a , a. b , b. 

\ + b (1 + a IT + b (7.34) 

Upon the substitution of (7.34) into (7.33), the expression yields 

a TT p +bir, p, aw Z p + b ir E p 

• • V -
a b a b 

 ̂\ \ "b. 

a TT + b TT 
a b 

(a k /  P E P + (b Pb ? Pb. 
K i i k 1 1 . 

+ 2 + 
(a TT + b TT ) 

a 0 

(a ',)(b :  Pb. + \  : Pa.) 
+ — + ... (7.35) 

(a IT^ + b ir^) 
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In the case of a geometric distribution, 

P. = P.(l - P-.)̂  

and when p's are small, 

P. = P.(l - k p ) (7.36) 

for i = a, b. 

Upon the substitution of (7.36) into (7.35) and when the third order terms 

are negligible, it can be shown that: 

• -1 -2 
E(r. ) = (a 71 + b ir, ) (a ir p + b ir, p, ) - (a tt + b IT, ) x 

I C  3 . D  Â Â  D D  Â  D  

X ((a TT )̂  p  ̂+ (b TT )̂  P, ̂ + k(a TT ) (b TT, )(p̂  + p.̂ ) -
a  a  D D  a o a o  

- 2(k - l)(a Tî )(b TT̂ ) p̂  p̂ ). (7.37) 

Under the conditions that the terms of order two are negligible: 

E(r. ) = (a rr + b TT, ) ̂ (a TT p + b TT, p, ) . 
T C  Â  D  Â  3  D  D  

Also from (7.25) it follows that; 

cov(r̂ , rg) = 0 
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var(r.) = (a ir + b ir ) ̂ ((a IT )̂  — + (b ir, — ) 
1 a b an b n̂  

a 
(7.38) 

var(r,) = (a ir + b i:, ) ̂ ((a ir )̂  — + (b TT, )̂  — ) 
z a D a n̂  b n̂  

Upon the substitution of (7.38) into (7.21), the expression yields 

(a TT̂  + b TT̂ ) ̂  ((a TT̂ )̂  (b \)̂  

w -â = 1 

-2 2 a 2 2 
2 (aTr̂  + b Y  ( ( = \ )  r )  

a b 

and 

(a TT + b TT, )"̂  ((a TT )̂  ̂  + (b ïïĵ  ̂ ) 
â b 3 n D n, 

w„ =  ̂  ̂
2 _o p P 9 Pv 2 

2(a IT + b O ((a TT )^ -â + (b TTj^ -^) 
â D â. n 0 n, 

a b 

Hence, 

Bias = Z (w. - 1/2) E(r.) = 0 
i=l  ̂  ̂

Observe that when the contributions of the terms of order two are signifi­

cant, the bias is generally not zero. 

2. Property groups classified by vintage and life 

Bias is evaluated as follows for the case of property group classi­

fied into multivintages and life. When data are based on unit counts, 

equation (6.40) gives 
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- 6̂~L—k+2,k ê-L-k+2,k 

k (1 - ̂  ̂ e-L-k+2,î  (1-2 

ê-L-k+2,̂ e-L-k+2, 
+ 5 .. (7.39) 

1 \-L-H-2,i) 

The e:iq>ectatioii of (7.39) yields 

A 
I 

1 

since by definition, E(e) = 0. 

''-k' ° (I 

 ̂̂ e-w-k+2,k ̂ e-w-k+2,k 

- f Vw-kH.2,1' 
iw 

But 

iw ̂ ®"W-k+2,k ̂ e-w-k+2,î  

~ ̂  iw ̂ e-w-k+2,k Pe-w-k+2,i O-M) 

The substitution of equation (7.42) into equation (7.41) yields 

» 

^̂ k̂̂   ̂̂e-w-k+2,k ̂ e-w-k+2,k ̂  

+ ZZZ ,k ̂ e-w-k+2,k ̂ e-u-k+2,k ̂ e-w-k+2,i "*"••• (̂ *̂ 3) 
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The retirement experience from the vintage groups included in the study 

is assumed to follow geometric distributions, i.e., 

ê-w-i+2,i ê-w-i+2̂  ̂~ ̂  ̂ e-w-i+2̂  

for all i and w. 

Under the above condition and when the terms of order three are negli­

gible, equation (7.43) is simplified to; 

E(rk) Z ̂ e-w-k+2,k ̂ e-w-k+Z 
w 

2 
 ̂̂  ̂e-w-k+2,k ̂ e-w-k+2 

+ (k - 1) ZZ '̂ e_u_]̂ +2,k '̂ e-w-k+2,k ̂ e-u-k+2 Pe-w-k+2' 
uw ' 

(7.44) 

Of special interest here is the case in which the terms of order two are 

also negligible due to the small p's. Equation (7.44) then gives 

E(rĵ ) = I TTg_̂ _k̂ 2,k Pe-w-k+2' (7.45) 
w 

Upon the substitution of (7.27) and (7.45) into (7.30), the bias can be 

estimated by 

2  2 - 1  

Bias = |(Z ê-vH-1 ̂  ̂ Vw,2 Pe-W)  ̂
n , m Tl 

w e-w+1 w e-w 
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2 

^ n ^^(^e-w+1,1 ^e-w+l " Vw,2 '"' 
w e-w w 

' : - V».l.l -e-̂ l»l (7.46) 

The bias of estimator is next computed for the case of data 

measured based on dollars. Equation (6.70) gives 

_ ê-w-k+2,k ê-w-k+2,k 

 ̂ (̂ *k ~ J ê-w-k+2,î  (̂ *k " ̂ ̂ e-w-k+2,î  
1 w 

, ê-w-k+2,î  
e-w-k+2,k 

2 
^^*k " J Vw-k+2,i^ 

As before, under geometric conditional distribution, it can be 

shown that: 

E(r̂ ) = a "e-w-k+a.k'"̂  
w 

ê-w-k+2 ̂ e-w-k+2,k ̂ e-w-k+2̂  ̂  
w 

+ (k-l)(Z •̂ e-w-k+2,k̂  %-v-k+2 ̂ e-w-k+2 ̂  
w ' vw 

^e-v-k+2,k ^e-w-k+2,k ^e-v-k+2 ^e-w-k+2 ' (7.47) 

Furthermore, when the second order terms are ignored, E(r̂ ) is given by 
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ECrfc) - (Z "̂ e-w-k+Z.k̂  

 ̂ ®e-w-k+2 \-w-k+2,k ̂ e-w-k+Ẑ  OAS) 

for k = 1, 2, 

Under the condition that the second order terms are negligible, equation 

(7.28) gives 

cov(r̂ , r̂ ) = 0. 

var(r̂ ) = (E VwH.l'"̂  
w 

- 1 2  2  
ŝtw ê-s+1 ®e-t+l %-w+l ̂ e-s+1,1 ̂ e-t+1,1 ̂ e-w+1,1 ̂e-w+1̂  

and 

varCrj) = (Î 
w 

ŝtw %-s+l %-t+l %-w+l ̂ e-s+1,1 ̂ e-t+1,1 ̂ e-w+1,1 ̂e-w+1̂  

(7.49) 

Upon the substitution of (7.48) and (7.49) into (7.30), the bias of the 

estimator 6̂  is given by 

1 -L 2 
Bias = —[(̂  a ,, ir ., ,) (ZEE ̂ e-s+1 *e-t+l ̂ e-w+1 

2  ̂ e-u+1 e-u+1,1 iT—: 
e-w+1 
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^e-s+1,1 ^e—t+1,1 ^e-w+1,1 ^e-w+1 ^ 

+ (S a TT ,)-4 (ZZZ ̂ e-s S-t %-t 
^e-s,2^e-t,2 ^e-w,2 ^e-w^ ^ ^ 

" "I V„ Vs.2 Vt,2 v„.2 x 

%-wH ̂e-w+1,1̂  %-wfl ̂e-w+1,1 ̂ e-w+1̂  

.-1 
- Vw Vw,2^ Vw Vw,2 Pe-w)) + 

w w ' 

+ Wi VuH.i'"'' Vs+I %-t+i ^ 
="• V»+1 

2 2 
^e-w+1 ^e-s+1,1 ^e-t+1,1 ^e-w+1,1 ^e-w+1^ 

^ %-w ^e-w,2^ S-w '^e-w,2 ^e-w^ w w 

%-w+l ^e-w+1,1^ ^e-M+1 ^e-w+1,1 ^e-w+l^^^* (7.50) 
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SUI-IMARY AND CONCLUSIONS 

The univariate distributions used in previous research do not take 

into consideration the random variability of life (age). Value is not 

independent of ages; hence, the univariate distributions can not fully 

describe the relationship between value and life. The above facts lead 

to the development of bivariate distributions of value and life. 

In this study, the joint continuous and discrete distributions of 

value and life were modeled. For the case of joint continuous distribu­

tion, bivariate lognormal and gamma distributions were applied to repre­

sent F(t), the proportion of dollars surviving up to age t. These 

distributions are well-known, but their application to life analysis 

appears to be new. 

When the joint distribution is bivariate lognormal, F(t) can be 

represented by 

£n t -
F(t) = 1 - $(  ̂ -) . 

Under the bivariate lognormal, the estimate of F(t) can be found by simply 

replacing unknown quantities by the sample quantities; 

2n t - L - O 
F(t) = 1 - 0( —) . 

So, when the mean, variance and covariance of the samples are known, the 

proportion of dollars surviving up to any age can be computed. Under 

the bivariate gamma distribution, F(t) is given by 

.... w - r̂ (̂t)) 

m 
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For the case of joint discrete distribution, the asymptotic co-

variance and variance structures of the retirement ratios of the indus­

trial properties which are respectively subject to the following condi­

tions, were determined. 

1. The retirement experience from value or vintage groups 
have different mortality characteristics, i.e., multi­
nomial life distributions. 

2. The retirement experience from value or vintage groups 
have the same mortality law. 

3. The retirement experience from value or vintage groups 
are assumed to follow geometric distributions, for both 
the situation 1., and the situation 2. 

Under 1., it was found that the asymptotic covariances between the retire­

ment ratios for two different age intervals are generally not zero. 

Under 2., it can be shown that the asymptotic covariances between 

the retirement ratios for two nohoverlapping age intervals are zero. 

Therefore, the retirement ratios are uncorrelated. Chiang (1960a) 

established zero correlation of retirement ratios for small samples, 

using a different method. Since a multinomial distribution tends to 

normality for large sample sizes, then the retirement ratios are found 

to be asymptotically independent. 

When the size of all vintage groups are taken to be equal, the asymp­

totic variances of retirement ratios can be written explicitly as a func­

tion of the inverse of the width of the experience band used in the study 

and the size of vintage. In general, it is true that the asymptotic 

variances of retirement ratios are inversely related to the band width 

and vintage size. 

This relationship may explain the basic idea of choosing the width 
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of experience band to be between 3 and 30 years, which is recommended by 

Marston et al. (1979). The smaller variances serve to reduce errors in 

estimating the survivor function developed on the basis of those re­

tirement ratios. 

When item values are incorporated in the analysis, the magnitude of 

the asymptotic variances of retirement ratios is reduced. Hence, the pri­

mary effect of using dollars as measures of the amount of property is to 

reduce the magnitude of the asymptotic variances. 

The condition that all value or vintage groups die according to the 

same mortality law may not be a realistic assumption. Industrial prop­

erties and the nature of their retirements are very complex. Many factors 

influence the rates of retirement in different ways and may have dis­

similar effects on the various property groups. However, if the condition 

is assumed and the number of units from each value or vintage group is 

sufficiently large, the retirement ratios are nearly independent. Fur­

ther, because of the characteristics of approximate independence of the 

retirement ratios, it is sufficient for fitting a general linear model 

to retirement ratios to use weighted least squares with only diagonal 

terms. Various weighting procedures can be developed for the above 

purposes. 

Mortality characteristic for long-lived property can be represented 

by a geometric distribution having a small parameter p. Under this dis­

tributional assumption the asymptotic variances and covariances are 

much simplified when the contributions of the third order terms of p's 

are insignificant. Of special interest here is the case in which the 
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second order p-terms are also negligible; for a single vintage group 

having two value categories, and the case of approximately constant early 

retirement rates, it is found that both the unweighted estimator 

. 1 k ^ k 
8. = -r Z r. and the weighted estimator 8„ = Z w. r , for k = 2, 

i=l  ̂ i=l  ̂

have the same variance. For common industrial mortality data aggregated 

over several vintage groups, both estimators do not have the same approxi­

mate variance. The approximate biases of the estimators 0̂  and were 

also computed. 

It would be interesting for future investigations to apply the 

technique of asymptotic expansion of distributions to develop higher 

order error terms for the linear-normal approximations used in the 

development of the asymptotic distributions developed in this thesis. 
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